Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T04:00:42.037Z Has data issue: false hasContentIssue false

Tailoring singlewalled carbon nanotubes for hydrogen storage

Published online by Cambridge University Press:  01 December 2005

M.K. Haas
Affiliation:
Corporate Science and Technology Center and Corporate Research Services Department, Air Products and Chemicals, Inc., Allentown, Pennsylvania 18195
J.M. Zielinski
Affiliation:
Corporate Science and Technology Center and Corporate Research Services Department, Air Products and Chemicals, Inc., Allentown, Pennsylvania 18195
G. Dantsin
Affiliation:
Corporate Science and Technology Center and Corporate Research Services Department, Air Products and Chemicals, Inc., Allentown, Pennsylvania 18195
C.G. Coe
Affiliation:
Corporate Science and Technology Center and Corporate Research Services Department, Air Products and Chemicals, Inc., Allentown, Pennsylvania 18195
G.P. Pez
Affiliation:
Corporate Science and Technology Center and Corporate Research Services Department, Air Products and Chemicals, Inc., Allentown, Pennsylvania 18195
A.C. Cooper*
Affiliation:
Corporate Science and Technology Center and Corporate Research Services Department, Air Products and Chemicals, Inc., Allentown, Pennsylvania 18195
*
a)Address all correspondence to this author. e-mail: cooperac@airproducts.com
Get access

Abstract

Hydrogen isotherms on a variety of single-walled carbon nanotube (SWNT) samples were measured using a differential pressure adsorption apparatus, which provides highly accurate data. A number of these SWNT samples were modified by a non-destructive cutting process, which reduced the aspect ratio of the nanotube bundles by two orders of magnitude. There were no apparent differences in the microporosity of SWNT as a function of aspect ratio. The adsorption of helium on SWNT is shown to be non-negligible and results in artificially low hydrogen capacities using conventional adsorption methodology. With no accounting for helium adsorption, the hydrogen adsorption results show that cut and uncut SWNT have similar hydrogen capacities of <1 wt% at 25 °C and pressures up to 110 bar. However, an analysis of hydrogen capacity versus N2 Brunauer–Emmett–Teller surface area suggests that there is an enhanced heat of adsorption of hydrogen for SWNT versus activated carbon.

Type
Articles—Energy and The Environment Special Section
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hynek, S., Fuller, W. and Bentley, J.: Hydrogen storage by carbon sorption. Int. J. Hydrogen Energy 22, 601 (1997).CrossRefGoogle Scholar
2.Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S. and Heben, M.J.: Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377 (1997).CrossRefGoogle Scholar
3.Dillon, A.C. and Heben, M.J.: Hydrogen storage using carbon adsorbents: Past, present and future. Appl. Phys. A 72, 133 (2001).CrossRefGoogle Scholar
4.Tibbetts, G.G., Meisner, G.P. and Olk, C.H.: Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39, 2291 (2001).CrossRefGoogle Scholar
5.Cheng, H., Pez, G.P. and Cooper, A.C.: Mechanism of hydrogen sorption in single-walled carbon nanotubes. J. Am. Chem. Soc. 123, 5845 (2001).CrossRefGoogle ScholarPubMed
6.Kostov, M.K., Cheng, H., Cooper, A.C. and Pez, G.P.: The influence of carbon curvature on molecular adsorptions in carbon-based materials: A force field approach. Phys. Rev. Lett. 89, 146105 (2002).CrossRefGoogle ScholarPubMed
7.Cheng, H., Cooper, A.C., Pez, G.P., Kostov, M.K., Piotrowski, P. and Stuart, S.J.: Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes. J. Phys. Chem. B 109, 3780 (2005).CrossRefGoogle ScholarPubMed
8.Kuznetsova, A., Yates, J.T. Jr., Liu, J. and Smalley, R.E.: Physical adsorption of xenon in open single walled carbon nanotubes: Observation of a quasi-one-dimensional confined Xe phase. J. Chem. Phys. 112, 9590 (2000).CrossRefGoogle Scholar
9.Talapatra, S., Zambano, A.Z., Weber, S.E. and Migone, A.D.: Gases do not adsorb on the interstitial channels of closed-ended single-walled carbon nanotube bundles. Phys. Rev. Lett. 85, 138 (2000).CrossRefGoogle Scholar
10.Chiang, I.W., Brinson, B.E., Huang, A.Y., Willis, P.A., Bronikowski, M.J., Margrave, J.L., Smalley, R.E. and Hauge, R.H.: Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 105, 8297 (2001).CrossRefGoogle Scholar
11.Strong, K.L., Anderson, D.P., Lafdi, K. and Kuhn, J.N.: Purification process for single-wall carbon nanotubes. Carbon 41, 1477 (2003).CrossRefGoogle Scholar
12.Heben, M.J., Dillon, A.C., Gennett, T., Alleman, J.L., Parilla, P.A., Jones, K.M. and Hornyak, G.L.: Rapid, room temperature, high-density hydrogen adsorption on single-walled carbon nanotubes at atmospheric pressure assisted by a metal alloy, in Nanotubes and Related Materials, edited by Rao, A.M. (Mater. Res. Soc. Symp. Proc. 633, Warrendale, PA, 2001), p. A9.1.Google Scholar
13.Haluska, M., Hulman, M., Hirscher, M., Becher, M., Becher, M., Roth, S., Stepanek, I. and Bernier, P.: Hydrogen storage in mechanically treated single wall carbon nanotubes. Electron. Properties Molec. Nanostruct. CP591, 603 (2001).CrossRefGoogle Scholar
14.O’Connell, M., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J., Hauge, R.H., Weisman, R.B. and Smalley, R.E.: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 26 (2002).Google ScholarPubMed
15.Smalley, R.E., Colbert, D. and Dai, H.: Carbon nanotubes purified under oxidizing conditions after being made by using high mass energy beam of high mass atoms, ultrasound, or reflux. European Patent No. EP 1 375 460 A2 (2004).Google Scholar
16.Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriquez-Macias, F., Shon, Y-S., Lee, T.R., Colbert, D.T. and Smalley, R.E.: Fullerene pipes. Science 280, 1253 (1998).CrossRefGoogle ScholarPubMed
17.Jeong, S.H., Lee, O.J. and Lee, K.H.: Preparation of aligned carbon nanotubes with prescribed dimensions: Template synthesis and sonication cutting approach. Chem. Mater. 14, 1859 (2002).CrossRefGoogle Scholar
18.Gu, Z., Hauge, R.H., Smalley, R.E. and Margrave, J.L.: Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2, 1009 (2002).CrossRefGoogle Scholar
19.Margrave, J.L., Gu, Z., Hauge, R.H. and Smalley, R.E.: Method for cutting single-walled carbon nanotubes through fluorination. U.S. Patent No. 0 009 114, A1 (2004).Google Scholar
20.Green, M. and Hodder, L.: Opening and Filling Carbon Nanotubes: WO 96/09246 (1996).Google Scholar
21.Tsang, S.C., Chen, Y.K., Harris, P. and Green, M.: A simple chemical method of opening and filling carbon nanotubes. Nature 272, 159 (1994).CrossRefGoogle Scholar
22.Smalley, R.E., Colbert, D.T., Dai, H., Liu, J., Rinzler, A.G., Hafner, J.H., Smith, K., Guo, T., Nikolaev, P., and Thess, A.: Method for Cutting Nanotubes. U.S. Patent No. 0 094 311 (2002).Google Scholar
23.Chambers, G., Carroll, C., Farrell, G.F., Dalton, A.B., McNamara, M., Panhuis, M. and Byrne, H.J.: Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Lett. 3, 843 (2003).CrossRefGoogle Scholar
24.Pierard, N., Fonseca, A., Konya, Z., Williams, I., Van Tendeloo, G. and Nagy, J.B.: Production of short carbon nanotubes with open tips by ball milling. Chem. Phys. Lett. 335, 1 (2001).CrossRefGoogle Scholar
25.Niesz, K., Siska, A., Vesselenyi, I., Hernadi, K., Mehn, D., Galbacs, G., Konya, Z. and Kiricsi, I.: Mechanical and chemical breaking of multiwalled carbon nanotubes. Catal. Today 76, 3 (2002).CrossRefGoogle Scholar
26.Vesselenyi, I., Siska, A., Mehn, D., Niesz, K., Konya, Z., Nagy, J.B. and Kirics, I.: Modification of multiwalled carbon nanotubes by different breaking processes. J. Physics IV France 12, 107 (2002).CrossRefGoogle Scholar
27.Stepanek, I., Maurin, G., Bernier, P., Gavillet, J. and Loiseau, A.: Cutting single wall carbon nanotubes, in Amorphous and Nanostructured Carbon, edited by Sullivan, J.P., Robertson, J., Zhao, O., Allen, T.B., and Coll, B.F. (Mater. Res. Soc. Symp. Proc. 593, Warrendale, PA, 2000), p. 119.Google Scholar
28.Maurin, G., Stepanek, I., Bernier, P., Colomer, J.F., Nagy, J.B. and Henn, F.: Segmented and opened multi-walled carbon nanotubes. Carbon 39, 1273 (2001).CrossRefGoogle Scholar
29.Zhang, M., Yudasaka, M., Koshio, A. and Iijima, S.: Effect of polymer and solvent on purification and cutting of single-wall carbon nanotubes. Chem. Phys. Lett. 349, 25 (2001).CrossRefGoogle Scholar
30.Zhang, M., Yudasaka, M., Koshio, A. and Iijima, S.: Structure of single-wall carbon nanotubes purified and cut using polymer. Appl. Phys. A 74, 7 (2002).CrossRefGoogle Scholar
31.Sloan, J., Hammer, J., Zwiefka-Sibley, M. and Green, M.L.H.: The opening and filling of single-walled carbon nanotubes. Chem. Commun. 3, 347 (1998).CrossRefGoogle Scholar
32.Chen, J., Dyer, M.J. and Foo, M.F.: Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 123, 6201 (2001).CrossRefGoogle ScholarPubMed
33.Saito, R., Jorio, A., Filho, A.G.S., Dresselhaus, G., Dresselhaus, M.S., Gruneis, A., Canado, L.G. and Pimenta, M.A.: First and second order resonance Raman process in graphite and single-wall carbon nanotubes. Jpn. J. Appl. Phys. 41, 4878 (2002).CrossRefGoogle Scholar
34.Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G. and Dresselhaus, M.S.: Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science 275, 187 (1997).CrossRefGoogle ScholarPubMed
35.Dillon, A.C., Yudasaka, M. and Dresselhaus, M.S.: Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. J. Nanosci. Nanotechnol. 4, 691 (2004).CrossRefGoogle ScholarPubMed
36.Dillon, A.C., Parilla, P.A, Alleman, J.L., Gennett, T., Jones, K.M. and Heben, M.J.: Systematic inclusion of defects in pure single-wall nanotubes and their effect on the Raman d-band. Chem. Phys. Lett. 401, 522 (2005).CrossRefGoogle Scholar
37.Sieverts, A.: Towards the knowledge of occlusions and diffusion of gases through metals. Z. Phys. Chem. 60, 129 (1907).CrossRefGoogle Scholar
38.Zielinski, J. M., Coe, C. G., Nickel, R. J., Romeo, A. M., Cooper, A. C., and Pez, G. P.: High pressure sorption isotherms via differential pressure measurements. Langmuir (submitted 2005).Google Scholar
39.Dreisbach, F.: Measurement of H2 adsorption on activated carbon, rubotherm Präzisionsmeßtechnik GmbH, Bochum, Germany (2004, private communication).Google Scholar
40.Li, Z., Pan, Z. and Dai, S.: Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification. J. Colloid Surf. Sci. 277, 35 (2004).CrossRefGoogle ScholarPubMed
41.Li, F., Wang, Y., Wang, D. and Wei, F.: Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 42, 2375 (2004).CrossRefGoogle Scholar
42.Anson, A., Jagiello, J., Parra, J.B., Sanjuan, M.L., Benito, A.M., Maser, W.K. and Martinez, M.T.: Porosity, surface area, surface energy, and hydrogen adsorption in nanostructured carbons. J. Phys. Chem. B 108, 15820 (2004).CrossRefGoogle Scholar
43.Poirier, E., Chahine, R. and Bose, T.K.: Hydrogen adsorption in carbon nanostructures. Int. J. Hydrogen Energy 26, 831 (2001).CrossRefGoogle Scholar
44.Pradhan, B.K., Harutyunyan, A.R., Stojkovic, D., Grossman, J.C., Zhang, P., Cole, M.W., Crespi, V., Goto, H., Fujiwara, J. and Eklund, P.C.: Large cryogenic storage of hydrogen in carbon nanotubes at low pressures. J. Mater. Res. 17, 2209 (2002).CrossRefGoogle Scholar
45.Takagi, H., Hatori, H., Soneda, Y., Yoshizawa, N. and Yamada, Y.: Adsorptive hydrogen storage in carbon and porous materials. Mater. Sci. Eng. B108, 143 (2004).CrossRefGoogle Scholar
46.Schlapbach, L. and Zuttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).CrossRefGoogle ScholarPubMed
47.Pace, E.L. and Siebert, A.R.: Heat of adsorption of parahydrogen and orthodeuterium on graphon. J. Phys. Chem. 63, 1398 (1959).CrossRefGoogle Scholar
48.Malbrunot, P., Vidal, D., Vermesse, J., Chahine, R. and Bose, T.K.: Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13, 539 (1997).CrossRefGoogle Scholar
49.Sircar, S.: Gibbsian surface excess for gas adsorption—Revisited. Ind. Eng. Chem. Res. 38, 3670 (1999).CrossRefGoogle Scholar
50.Sircar, S.: Measurement of Gibbsian surface excess. AIChE J. 47, 1169 (2001).CrossRefGoogle Scholar
51.Liu, C., Yang, H., Tong, Y., Cong, H.T. and Cheng, H.M.: Volumetric hydrogen storage in single-walled carbon nanotubes. Appl. Phys. Lett. 80, 2389 (2002).CrossRefGoogle Scholar