Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T23:28:23.137Z Has data issue: false hasContentIssue false

Systematic dependence of kinetic and thermodynamic barriers to homogeneous silica nucleation on NaCl and amino acids

Published online by Cambridge University Press:  15 February 2019

Patricia M. Dove*
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA
Nizhou Han
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA
Adam F. Wallace
Affiliation:
Department of Geological Sciences, University of Delaware, Newark, Delaware 19716, USA
*
a)Address all correspondence to this author. e-mail: dove@vt.edu
Get access

Abstract

The kinetics of silica polymerization was measured in silicic acid solutions containing a suite of 0.1 M amino acids, 0.1 M citric acid, 0.7 M NaCl, and 0.10 M NaCl (Control). Fitting a modified classical rate model to measurements of induction time (τ) at 20 °C for a series of supersaturated solutions, we estimate the thermodynamic barrier (ΔGc), interfacial free energy (γ), and kinetic barrier (Δagk) for silica nucleation. For 0.10 M NaCl solutions, γControl = 54.9 ± 1.6 mJ/m2 and ΔagkControl = 2.29 × 10−19 J/mol. These values are consistent with previous reports for amorphous and fused silica materials. To facilitate comparisons with the treatments, ΔagkControl is converted to a molar basis and used as a reference datum, such that ΔagkControl = 0.0 J/mol. The effects of salt and organic acids on nucleation rate have thermodynamic and kinetic origins, respectively. Faster nucleation rates measured in 0.7 M NaCl solutions arise from a lower interfacial free energy, such that γ0.7 M NaCl = 51.4 ± 1.7 mJ/m2. Organic acids increase rate through biomolecule-specific reductions in Δagk. Catalytic effects are greatest for lysine (Δagklysine = −1685 ± 315) and citric acid (Δagkcitric = −1690 ± 96 J/mol). Reductions in the kinetic barrier correlate with net positive charge of the amino acids and dissociation of the amine $\left( {{K_{\alpha {\rm{ ‐ N}}{{\rm{H}}_3}^ {\bf{+}} }}} \right)$ group and thus the abundance of the conjugate base. Citric acid, lacking amine groups, promotes the greatest rate enhancement, thus demonstrating the role(s) of additional kinetic factors in promoting nucleation rate. Catalytic activity correlates with multiple physical and chemical properties of the organic acids.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Graham, T.: XXXV.—On the properties of silicic acid and other analogous colloidal substances. J. Chem. Soc. 17, 318 (1864).CrossRefGoogle Scholar
Alexander, G.B.: The polymerization of monosilicic acid. J. Am. Chem. Soc. 76, 2094 (1954).CrossRefGoogle Scholar
Greenberg, S.A. and Sinclair, D.: The polymerization of silicic acid. J. Phys. Chem. 59, 435 (1955).CrossRefGoogle Scholar
Bishop, A. Jr. and Bear, J.: The thermodynamics and kinetics of the polymerization of silicic acid in dilute aqueous solution. Thermochim. Acta 3, 399 (1972).CrossRefGoogle Scholar
Iler, R.K.: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (John Wiley & Sons, New York, 1979); p. 54, 97, 214, 216.Google Scholar
Markrides, A.C., Turner, M., and Slaughter, J.: Condensation of silica from supersaturated silicic acid solutions. J. Colloid Interface Sci. 73, 345 (1980).CrossRefGoogle Scholar
Weres, O., Yee, A., and Tsao, L.: Kinetics of silica polymerization. J. Colloid Interface Sci. 84, 379 (1981).CrossRefGoogle Scholar
Tarutani, T.: Polymerization of silicic acid: A review. Anal. Sci. 5, 245 (1989).CrossRefGoogle Scholar
Volcani, B.E.: Roles of silicon in diatom metabolism and silicification. In Biochemistry of Silicon and Related Problem, Bendz, G. and Lindqvist, I., eds. (Plenum, New York, 1978); p. 177.CrossRefGoogle Scholar
Tréguer, P.J. and De La Rocha, C.L.: The world ocean silica cycle. Annu. Rev. Mar. Sci. 5, 477 (2013).CrossRefGoogle ScholarPubMed
Perry, C.C. and Keeling-Tucker, T.: Biosilicification: The role of the organic matrix in structure control. J. Biol. Inorg Chem. 5, 537 (2000).CrossRefGoogle ScholarPubMed
Hecky, R.E., Mopper, K., Kilham, P., and Degens, E.T.: The amino acid and sugar composition of diatom cell walls. Mar. Biol. 19, 323 (1973).CrossRefGoogle Scholar
Vrieling, E.G., Beelen, T.P.M., van Santen, R.A., and Gieskes, W.W.C.: Diatom silicon biomineralization as an inspirational source of new approaches to silica production. J. Biotechnol. 70, 39 (1999).CrossRefGoogle Scholar
Matsunaga, S., Sakai, R., Jimbo, M., and Kamiya, H.: Long chain polyamines (LCPAs) from marine sponge: Possible implication in spicule formation. ChemBioChem 8, 1729 (2007).CrossRefGoogle ScholarPubMed
Kröger, N., Deutzmann, R., and Sumper, M.: Polycationic peptide from diatom biosilica that direct silica nanosphere formation. Science 286, 1129 (1999).Google ScholarPubMed
Kröger, N., Deutzmann, R., Bergsdorf, C., and Sumper, M.: Species-specific polyamines from diatom control silica morphology. Proc. Natl. Acad. Sci. U. S. A. 97, 14133 (2000).CrossRefGoogle ScholarPubMed
Spinthaki, A., Zerfaß, C., Paulsen, H., Hobe, S., and Demadis, K.D.: Pleiotropic role of recombinant silaffin-like cationic polypeptide P5S3: Peptide-induced silicic acid stabilization, silica formation and inhibition of silica dissolution. ChemistrySelect 2, 6 (2017).CrossRefGoogle Scholar
Shimizu, K., Cha, J., Stucky, G.D., and Morse, D.E.: Silicatein α: Cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. U. S. A. 95, 6234 (1998).CrossRefGoogle ScholarPubMed
Cha, J., Shimizu, K., Zhou, Y., Christiansen, S.C., Chemelka, B.F., Stucky, G.D., and Morse, D.E.: Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc. Natl. Acad. Sci. U. S. A. 96, 361 (1999).CrossRefGoogle ScholarPubMed
Sumper, M., Lorenz, S., and Brunner, E.: Biomimetic control of size in the polyamine-directed formation of silica nanosphere. Angew. Chem., Int. Ed. 42, 5192 (2003).CrossRefGoogle Scholar
Patwardhan, S.V., Clarson, S.J., and Perry, C.C.: On the role(s) of additives in bioinspired silicification. Chem. Commun., 1113 (2005).CrossRefGoogle ScholarPubMed
Mizutani, T., Nagase, H., and Ogoshi, H.: Silicic acid polymerization catalyzed by amines and polyamines. Chem. Lett. 27, 133 (1998).CrossRefGoogle Scholar
Mizutani, T., Nagase, H., Fujiwara, N., and Ogoshi, H.: Silicic acid polymerization catalyzed by amines and polyamines. Bull. Chem. Soc. Jpn. 71, 2017 (1998).CrossRefGoogle Scholar
Coradin, T., Durupthy, O., and Livage, J.: Interactions of amino-containing peptides with sodium silicate and colloidal silica: A biomimetic approach of silicification. Langmuir 18, 2331 (2002).CrossRefGoogle Scholar
Pohnert, G.: Biomineralization in diatoms mediated through peptide- and polyamines-assisted condensation of silica. Angew. Chem., Int. Ed. 41, 3167 (2002).3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Menzel, H., Horstmann, S., Behrens, P., Bärnreuther, P., Krueger, I., and Jahns, M.: Chemical properties of polyamines with relevance to the biomineralization of silica. Chem. Commun., 29942995 (2003).CrossRefGoogle ScholarPubMed
Patwardhan, S.V. and Clarson, S.J.: Silicification and biosilicification: Part 5. An investigation of the silica structures formed at weakly acidic pH and neutral pH as facilitated by cationically charged macromolecules. Mater. Sci. Eng., C 23, 495 (2003).CrossRefGoogle Scholar
Sumper, M. and Kröger, N.: Silica formation in diatoms: The function of long-chain polyamines and silaffins. J. Mater. Chem. 14, 2059 (2004).CrossRefGoogle Scholar
Knecht, M.R. and Wright, D.W.: Amine-terminated dendrimers as biomimetic templates for silica nanosphere formation. Langmuir 20, 4728 (2004).CrossRefGoogle ScholarPubMed
Delak, K.M. and Sahai, N.: Amine-catalyzed biomimetic hydrolysis and condensation of organosilicate. Chem. Mater. 17, 3221 (2005).CrossRefGoogle Scholar
Robinson, D.B., Rognlien, J.L., Bauer, C.A., and Simmons, B.A.: Dependence of amine-accelerated silicate condensation on amine structure. J. Mater. Chem. 17, 2113 (2007).CrossRefGoogle Scholar
Belton, D., Patwardhan, S.V., Annenkov, V.V., Danilovtseva, E.N., and Perry, C.C.: From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonation of polyamines. Proc. Natl. Acad. Sci. U. S. A. 105, 5963 (2008).CrossRefGoogle ScholarPubMed
Kuno, T., Nonoyama, T., Hirao, K., and Kato, K.: Influence of charge relay effect on the silanol condensation reaction as a model for silica biomineralization. Langmuir 27, 13154 (2011).CrossRefGoogle ScholarPubMed
Kasotakis, E. and Mitraki, A.: Silica biotemplating by self-assembling peptide via serine residues activated by the peptide amino terminal group. Pept. Sci. 98, 501 (2012).CrossRefGoogle ScholarPubMed
Mural, K., Higuchi, M., Kuno, T., and Kato, K.: Silica mineralization by a peptide template having a high charge relay effect. ChemPlusChem 79, 531 (2014).Google Scholar
Rimola, A., Sodupe, M., and Ugliengo, P.: Amide and peptide bond formation: Interplay between strained ring defects and silanol groups at amorphous silica surfaces. J. Phys. Chem. 120, 24817 (2016).Google Scholar
Lemloh, M-L., Altintoprak, K., Wege, C., Weiss, I.M., and Rothenstein, D.: Biogenic and synthetic peptides with oppositely charged amino acids as binding sites for mineralization. Materials. 10, 119 (2017).CrossRefGoogle ScholarPubMed
Chiovitti, A., Harper, R.E., and Willis, A.: Variations in the substituted 3-linked mannans closely associated with the silicified walls of diatoms. J. Phycol. 41, 11541161 (2005).CrossRefGoogle Scholar
Belton, D., Paine, G., Patwardhan, S.V., and Perry, C.C.: Towards an understanding of (bio)silicification: The role of amino acids and lysine oligomers in silicification. J. Mater. Chem. 14, 2231 (2004).CrossRefGoogle Scholar
Coradin, T. and Livage, J.: Effect of some amino acids and peptides on silicic acid polymerization. Colloids Surf., B 21, 329 (2001).CrossRefGoogle ScholarPubMed
Liang, M., Patwardhan, S.V., Danilovtseva, E.N., Annenkov, V.V., and Perry, C.C.: Imidazole catalyzed silica synthesis: Progress toward understanding the role of histidine in (bio)silicification. J. Mater. Res. 24, 1700 (2009).CrossRefGoogle Scholar
Kröger, N., Lorenz, S., Brunner, E., and Sumper, M.: Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298, 584 (2002).CrossRefGoogle ScholarPubMed
Demadis, K.D. and Neofotistou, E.: Synergistic effects of combinations of cationic polyaminoamide dendrimers/anionic polyelectrolytes on amorphous silica formation: A bioinspired approach. Chem. Mater. 19, 581 (2007).CrossRefGoogle Scholar
Wallace, A.F., DeYoreo, J.J., and Dove, P.M.: Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: Insights for biomineralization. J. Am. Chem. Soc. 131, 5244 (2009).CrossRefGoogle ScholarPubMed
Giuffrea, A.J., Hamm, L.M., Han, N., De Yoreo, J.J., and Dove, P.M.: Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc. Natl. Acad. Sci. U. S. A. 110, 9261 (2013).CrossRefGoogle Scholar
Hamm, L.M., Giuffre, A.J., Han, N., Tao, J., Wang, D., De Yoreo, J.J., and Dove, P.M.: Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies. Proc. Natl. Acad. Sci. U. S. A. 111, 1304 (2014).CrossRefGoogle ScholarPubMed
Coombs, J. and Volcani, B.E.: Studies on the biochemistry and fine structure of silica shell formation in diatoms. Planta 80, 264 (1968).CrossRefGoogle Scholar
Toschev, S.: Homogeneous nucleation. In Crystal Growth: An Introduction, Bardsley, W., Hurle, D.T.J., and Mullin, J.B., eds. (North-Holland Series in Crystal Growth, North-Holland Publishing Company, Amsterdam, 1973); p. 1.Google Scholar
Söhnel, O. and Mullin, J.W.: Interpretation of crystallization induction periods. J. Colloid Interface Sci. 123, 4350 (1988).CrossRefGoogle Scholar
He, S., Oddo, J.E., and Tomson, M.B.: The nucleation kinetics of barium sulfate in NaCl solutions up to 6 M and 90 °C. J. Colloid Interface Sci. 174, 319 (1995).CrossRefGoogle Scholar
Liu, Y., Wu, W., Sethuraman, G., and Nancollas, G.H.: Intergrowth of calcium phosphates: An interfacial energy approach. J. Cryst. Growth 174, 386 (1997).CrossRefGoogle Scholar
Teychené, S. and Biscans, B.: Nucleation kinetics of polymorphs: Induction period and interfacial energy measurements. Cryst. Growth Des. 8, 1133 (2008).CrossRefGoogle Scholar
Mann, S.: Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Chemistry Matters, Oxford University Press, New York, 2001); p. 42.Google Scholar
de Yoreo, J.J. and Vekilov, P.G.: Principles of crystal nucleation and growth. In Biomineralization, Dove, P.M., De Yore, J.J., and Weiner, S., eds.; Mineralogical Society of America Geochemical Society Series, Vol. 54 (Washington D.C., 2003); p. 57.CrossRefGoogle Scholar
Espenson, J.H.: Chemical Kinetics and Reaction Mechanisms (McGraw-Hill Book Company, New York, 1981); p. 152.Google Scholar
Poon, G.G. and Peters, B.: Accelerated nucleation due to trace additives: A fluctuating coverage model. J. Phys. Chem. B 120, 1679 (2016).CrossRefGoogle ScholarPubMed
Legg, B.A., Zhu, M., Zhang, H., Waychunas, G., Gilbert, B., and Banfield, J.F.: A model for nucleation when nuclei are nonstoichiometric: Understanding the precipitation of iron oxyhydroxide nanoparticles. Cryst. Growth Des. 16, 5726 (2016).CrossRefGoogle Scholar
Galkin, O. and Vekilov, P.G.: Direct determination of the nucleation rates of protein crystals. J. Phys. Chem. B 103, 10965 (1999).CrossRefGoogle Scholar
Busey, R.H. and Mesmer, R.E.: Ionization equilibria of silicic acid and polysilicate formation in aqueous sodium chloride solutions to 300 °C. Inorg. Chem. 16, 2444 (1977).CrossRefGoogle Scholar
Shimada, K. and Tarutani, T.: The kinetics of the polymerization of silicic acid. Bull. Chem. Soc. Jpn. 53, 3488 (1980).CrossRefGoogle Scholar
Söhnel, O.: Electrolyte crystal-aqueous solution interfacial tensions from crystallization data. J. Cryst. Growth 11, 233 (1982).Google Scholar
Gambino, G.L., Lombardo, G.M., Grassi, A., and Marletta, G.: Molecular modeling of interaction between L-lysine and a hydroxylated quartz surface. J. Phys. Chem. B 108, 2600 (2004).CrossRefGoogle Scholar
Lomenech, C., Bery, G., Costa, D., Stievano, L., and Lambert, J.F.: Theoretical and experimental study of the adsorption of neutral glycine on silica from the gas phase. ChemPhysChem 6, 1061 (2005).CrossRefGoogle ScholarPubMed
Gambino, G.L., Grassi, A., and Marletta, G.: Molecular modeling of interaction between L-lysine and functionalized quartz surface. J. Phys. Chem. B 110, 4836 (2006).CrossRefGoogle Scholar
Nonella, M. and Seeger, S.: Investigating alanine-silica interaction by means of first-principles molecular-dynamic simulations. ChemPhysChem 9, 414 (2008).CrossRefGoogle Scholar
Yuwono, V.M. and Hartgerink, J.D.: Peptide amphiphile nanofibers template and catalyze silica nanotube formation. Langmuir 23, 5033 (2007).CrossRefGoogle ScholarPubMed
Rimola, A., Sodupe, M., and Ugliengo, P.: Affinity scale for the interaction of amino acids with silica surfaces. J. Phys. Chem. C 113, 5741 (2009).CrossRefGoogle Scholar
Vceláková, K., Zusková, I., Kenndler, E., and Gas, B.: Determination of cationic mobilities and pKa values of 22 amino acids by capillary zone electrophoresis. Electrophoresis 25, 309317 (2004).CrossRefGoogle ScholarPubMed
Iwaji, I. and Toshikazu, T.: Silica in water. V. Salt effect on the colorimetric determination of silica in concentrated salt solution. Bull. Chem. Soc. Jpn. 32, 32 (1959).Google Scholar
Saidel, L.J., Goldfarb, A.R., and Waldman, S.: The absorption spectra of amino acids in the region two hundred to two hundred and thirty millimicrons. J. Biol. Chem. 197, 285 (1952).Google ScholarPubMed
Van Cappellen, P. and Qiu, L.: Biogenic silica dissolution in sediments of the Southern Ocean. I. Solubility. Deep Sea Res., Part II 44, 1109 (1997).CrossRefGoogle Scholar
Dove, P.M., Han, N., Wallace, A.F., and De Yoreo, J.J.: Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs. Proc. Natl. Acad. Sci. U. S. A. 105, 9903 (2008).CrossRefGoogle ScholarPubMed
Nelson, D.L. and Cox, M.M.: Lehninger: Principles of Biochemistry, 5th ed. (W. H. Freeman and Company, New York, 2008); p. 78.Google Scholar
Moore, D.: Amino acid and peptide net charges: A simple calculational procedure. Biochem. Educ. 13, 10 (1985).CrossRefGoogle Scholar
Rogacs, A. and Santiago, J.G.: Temperature effects on electrophoresis. Anal. Chem. 85, 5103 (2013).CrossRefGoogle ScholarPubMed