Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:06:00.823Z Has data issue: false hasContentIssue false

Synthesis of TiN/Si3N4 composite powders by mechanically activated annealing

Published online by Cambridge University Press:  01 April 2005

J.M. Córdoba
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro mixto CSIC-US, 41092 Sevilla, Spain
R. Murillo
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro mixto CSIC-US, 41092 Sevilla, Spain
M.D. Alcalá
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro mixto CSIC-US, 41092 Sevilla, Spain
M.J. Sayagués
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro mixto CSIC-US, 41092 Sevilla, Spain
F.J. Gotor*
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, Centro mixto CSIC-US, 41092 Sevilla, Spain
*
a) Address all correspondence to this author. e-mail: fgotor@cica.es
Get access

Abstract

TiN/Si3N4 composite powders were obtained by a process that combines the mechanical activation of titanium and silicon powders at room temperature through high-energy milling with an isothermal annealing in a nitrogen atmosphere to complete the synthetic reaction. Mechanical activation has allowed us to complete the synthesis at 1350 °C only. The β–Si3N4 content in the final powder tends to increase as the milling time is prolonged. The microstructure of the TiN/Si3N4 composite powders has a bimodal character composed of TiN and β–Si3N4 grains and α-Si3N4 nanowires. Diameters of the nanowires range from 10 to 70 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Riley, F.L.: Applications of silicon nitride ceramics, in Advanced Ceramic Materials, Key Engineering Materials Vol. 122–124 (Trans Tech Publishing, Switzerland, 1996), pp. 479 and 487.Google Scholar
2. Pyzik, J. and Beaman, D.R.: Microstructure and properties of self-reinforced silicon nitride. J. Am. Ceram. Soc. 76, 2737 (1993).CrossRefGoogle Scholar
3. Luo, Y.M., Zheng, Z.M., Xie, Z.M. and Zhang, Z.J.: Growth of silicon nitride whisker from polytitanosilazane. Mater. Lett. 58, 2114 (2004).CrossRefGoogle Scholar
4. Iwanaga, H. and Kawai, C.: Tensile strength of silicon nitride whiskers synthesized by reacting amorphous silicon nitride and titanium dioxide. J. Am. Ceram. Soc. 81, 773 (1998).CrossRefGoogle Scholar
5. Pickles, C.A. and Toguri, J.M.: The plasma-arc production of Si-based ceramic whiskers. J. Mater. Res. 8, 1996 (1993).CrossRefGoogle Scholar
6. Han, W.Q., Fan, S.S., Li, Q.Q., Gu, B.L., Zhang, X.B. and Yu, D.P.: Synthesis of silicon nitride nanorods using carbon nanotube as a template. Appl. Phys. Lett. 71, 2271 (1997).CrossRefGoogle Scholar
7. Gundiah, G., Madhav, G.V., Govindaraj, A., Seikh, Md. M. and Rao, C.N.R.: Synthesis and characterization of silicon carbide, silicon oxynitride and silicon nitride nanowires. J. Mater. Chem. 12, 1606 (2002).CrossRefGoogle Scholar
8. Sunkara, M.K., Sharma, S., Chandrasekaran, H., Talbott, M., Krogman, K. and Bhimarasetti, G.: Bulk synthesis of a-Si x N y H and a-Si x O y straight and coiled nanowires. J. Mater. Chem. 14, 590 (2004).CrossRefGoogle Scholar
9. Nakano, K., Kamiya, A., Nishino, Y., Imura, T. and Chou, T.W.: Fabrication and characterization of 3-dimensional carbon-fiber-reinforced silicon-carbide and silicon-nitride composites. J. Am. Ceram. Soc. 78, 2811 (1995).CrossRefGoogle Scholar
10. Morozum, H., Sato, K., Tezuka, A., Kaya, H. and Isoda, T.: Preparation of high strength ceramic fibre reinforced silicon nitride composites by a preceramic polymer impregnation method. Ceram. Int. 23, 179 (1997).CrossRefGoogle Scholar
11. Ritter, J.E., Jakus, K. and Godin, M.H.: Comparison of high-temperature crack-growth in SiC-whisker-reinforced mullite and Si3N4 . J. Am. Ceram. Soc. 75, 1760 (1992).CrossRefGoogle Scholar
12. Hwang, K.T., Kim, C.S., Auh, K.H., Cheong, D.S. and Niihara, K.: Influence of SiC particle size and drying method on mechanical properties and microstructure of Si3N4/SiC nanocomposite. Mater. Lett. 32, 251 (1997).CrossRefGoogle Scholar
13. Bao, X.J. and Edirisinghe, M.J.: Different strategies for the synthesis of silicon carbide silicon nitride composites from preceramic polymers. Compos. Pt. A Appl. Sci. Manuf. 30, 601 (1999).CrossRefGoogle Scholar
14. Higuchi, M., Miyake, M., Kakeuchi, H., and Kamjo, E.: Electrically conductive sintered compact of Si3N4 machinable by electrical discharge machining and process of producing the same. U.S. Patent No. 4 659 508 (1987).Google Scholar
15. Choi, H.J., Cho, K.S. and Lee, J.G.: R-curve behavior of silicon nitride-titanium nitride composites. J. Am. Ceram. Soc. 80, 2681 (1997).CrossRefGoogle Scholar
16. Deschaux-Baume, F., Cutard, T., Fréty, N. and Levaillant, C.: Oxidation of a silicon nitride-titanium nitride composite: microstructural investigations and phenomenological modelling. J. Am. Ceram. Soc. 85, 1860 (2002).CrossRefGoogle Scholar
17. Gogotsi, Y.G. and Porz, F.: The oxidation of particulate-reinforced Si3N4–TiN composites. Corros. Sci. 33, 627 (1992).CrossRefGoogle Scholar
18. Liang, H. Q., Juan, C., Wei, P., Jian, C. and Jie, L.: In situ processing of TiN/Si3N4 composites by Ti–Si3N4 solid state reaction. Mater. Lett. 31, 221 (1997).Google Scholar
19. Lee, B.T., Yoon, Y.J. and Lee, K.H.: Microstructural characterization of electroconductive Si3N4–TiN Composites. Mater. Lett. 47, 71 (2001).CrossRefGoogle Scholar
20. Hwang, S., Nishimura, C. and McCormick, P.G.: Compressive mechanical properties of Mg–Ti–C nanocomposite synthesised by mechanical milling. Scripta Mater. 44, 2457 (2001).CrossRefGoogle Scholar
21. Hanada, K., Khor, K.A., Tan, M.J., Murakoshi, Y., Negishi, H. and Sano, T.: Aluminium-lithium/SiCp composites produced by mechanically milled powders. J. Mater. Process. Technol. 67, 8 (1997).CrossRefGoogle Scholar
22. Li, Z., Gao, W., Liang, J. and Zhang, D.L.: Oxidation behaviour of Ti3Al–TiC composites. Mater. Lett. 57, 1970 (2003).CrossRefGoogle Scholar
23. Lu, L., Thong, K.K. and Gupta, M.: Mg-based composite reinforced by Mg2Si. Compos. Sci. Technol. 63, 627 (2003).CrossRefGoogle Scholar
24. Fogagnolo, J.B., Ruiz-Navas, E.M., Robert, M.H. and Torralb, J.M.: 6061 Al reinforced with silicon nitride particles processed by mechanical milling. Scripta Mater. 47, 243 (2002).CrossRefGoogle Scholar
25. Gotor, F.J., Alcalá, M.D., Real, C. and Criado, J.M.: Combustion synthesis of TiN induced by high-energy ball milling of Ti under itrogen atmosphere. J. Mater. Res. 17, 1655 (2002).CrossRefGoogle Scholar
26. Calka, A. and Nikolov, J.I.: Direct synthesis of AlN and Al–AlN composites by room temperature magneto ball milling: The effect of milling condition on formation of nanostructures. Nanostruct. Mater. 6, 409 (1995).CrossRefGoogle Scholar
27. Chen, Y., Willians, J.S. and Wang, G.M.: High-temperature phase transformations of iron anhydrous ammonia system realized by ball milling at room temperature. J. Appl. Phys. 79, 3956 (1996).CrossRefGoogle Scholar
28. Li, Z.L., Willians, J.S. and Calka, A.: The role of hydrogen and iron in silicon nitridation by ball milling. J. Appl. Phys. 81, 8029 (1997).CrossRefGoogle Scholar
29. Lim, W.Y., Hida, M., Sakakibara, A., Takemoto, Y. and Yokomizo, S.: Structural stability and mechanochemical activity of titanium nitride prepared by mechanical alloying. J. Mater. Sci. 28, 3463 (1993).CrossRefGoogle Scholar
30. Ogino, Y., Yamasaki, T., Miki, M., Atsumi, N. and Yoshioka, K.: Synthesis of TiN and (Ti, Al)N powders by mechanical alloying in nitrogen gas. Scr. Metall. Mater. 28, 967 (1993).CrossRefGoogle Scholar
31. Chin, Z.H. and Perng, T.P.: In situ observation of combustion to form TiN during ball milling Ti in nitrogen. Appl. Phys. Lett. 70, 2380 (1997).CrossRefGoogle Scholar
32. El-Eskandarany, M.S., Sumiyama, K., Aoki, K. and Suzuki, K.: Morphological and structural evolution of non-equilibrium titanium-nitride alloy powders produced by reactive ball milling. J. Mater. Res. 7, 888 (1992).CrossRefGoogle Scholar
33. Criado, J.M., Alcala, M.D. and Real, C.: Influence of the atmosphere control during the grinding of titanium powder on its reactivity towards the conversion into titanium nitride. Solid State Ionics 101, 1387 (1997).CrossRefGoogle Scholar
34. Chen, Y., Li, Z.L. and Williams, J.S.: The evolution of hydriding and nitriding reactions during ball-milling of titanium in ammonia. J. Mater. Sci. Lett. 14, 542 (1995).CrossRefGoogle Scholar
35. Wexler, D., Calka, A. and Mosbah, A.Y.: Ti–TiN hard-metals prepared by in situ formation of TiN during reactive ball milling of Ti in ammonia. J. Alloys Compd. 309, 201 (2000).CrossRefGoogle Scholar
36. Zhang, H., Kisi, E.H. and Myhra, S.: A solid solution pumping mechanism for the nitrogenation of titanium during mechanical deformation in air. J. Phys. D: Appl. Phys. 29, 1367 (1996).CrossRefGoogle Scholar
37. Li, Z.L., Williams, J.S. and Calka, A.: The role of hydrogen and iron in silicon nitridation by ball milling. J. Appl. Phys. 81, 8029 (1997).CrossRefGoogle Scholar
38. Shaw, L.L., Yang, Z. and Ren, R.: Mechanically enhanced reactivity of silicon for the formation of silicon nitride composites. J. Am. Ceram. Soc. 81, 760 (1998).CrossRefGoogle Scholar
39. Gaffet, E. and Malhouroux-Gaffet, N.: Nanocrystalline MoSi2 phase-formation induced by mechanically activated annealing. J. Alloys Compd. 205, 27 (1994).CrossRefGoogle Scholar
40. Doppiu, S., Monagheddu, M., Cocco, G., Maglia, F., Anselmi-Tamburini, U. and Munir, Z.A.: Mechanochemistry of the titanium-silicon system: compositional effects. J. Mater. Res. 16, 1266 (2001).CrossRefGoogle Scholar
41. Hillinger, G. and Hlavacek, V.: Direct synthesis and sintering of silicon nitride/titanium nitride composite. J. Am. Ceram. Soc. 78, 495 (1995).CrossRefGoogle Scholar
42. Yen, B.K.: X-ray diffraction study of the solid-state formation of metastable MoSi2 and TiSi2 during mechanical alloying. J. Appl. Phys. 81, 7061 (1997).CrossRefGoogle Scholar
43. Ade, M. and Haußelt, J.: Electroconductive ceramic composites with low-to-zero shrinkage during sintering. J. Eur. Ceram. Soc. 23, 1979 (2003).CrossRefGoogle Scholar
44. MacKenzie, K.J.D. and Meinhold, R.H.: Role of additives in the sintering of silicon nitride: A 29Si, 27Al, 25Mg, and 89Y MAS NMR and x-ray diffraction study. J. Mater. Chem. 4, 1595 (1994).CrossRefGoogle Scholar
45. Massiot, D., Fayon, F., Capron, M., King, I., Calvé, S. Le, Alonso, B., Durand, J-O., Bujoli, B., Gan, Z. and Hoatson, G.: Modelling one- and two-dimensional solid state NMR spectra. Magn. Reson. Chem. 40, 70 (2002).CrossRefGoogle Scholar
46. Jennings, H.M.: Review on reactions between silicon and nitrogen: Part 1, Mechanism. J. Mater. Sci. 18, 951 (1983).CrossRefGoogle Scholar
47. Mukerji, J. and Biswas, S.K.: Effect of iron, titanium, and hafnium on second-stage nitriding of silicon. J. Am. Ceram. Soc. 64, 549 (1981).CrossRefGoogle Scholar
48. Pavarajarn, V. and Kimura, S.: Catalytic effects of metals on direct nitridation of silicon. J. Am. Ceram. Soc. 84, 1669 (2001).CrossRefGoogle Scholar