Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:22:18.590Z Has data issue: false hasContentIssue false

Synthesis of Sr2KNb5O15 Thin Films by Chemical Solution Deposition Method

Published online by Cambridge University Press:  31 January 2011

Wataru Sakamoto
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Toshinobu Yogo
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Takae Kuroyanagi
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Shin-ichi Hirano
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Get access

Abstract

Crack-free and transparent Sr2KNb5O15 (SKN) thin films have been synthesized by the chemical solution deposition method. A homogeneous and stable precursor solution was prepared via controlling the reaction of metal alkoxides. SKN precursor was found to be the complex alkoxide between Sr[Nb(OEt)6]2 and KNb(OEt)6 with high structural symmetry. SKN powders and thin films on fused silica substrates directly crystallized to the polycrystalline tetragonal tungsten bronze phase at 600 °C. Highly oriented SKN thin films with the tetragonal tungsten bronze phase were fabricated on MgO(100) and Pt(100)/MgO(100) substrates. Two crystal lattice planes of SKN were intergrown at an orientation of 18.5° on MgO(100). The dielectric constant of SKN thin films on Pt(100)/MgO(100) was about 590 at 20 °C at 1 kHz.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Giess, E.A., Scott, B. A., Burns, G., O'Kane, D. F., and Segmuller, A., J. Am. Ceram. Soc. 52, 276 (1969).Google Scholar
2.Scott, B. A., Giess, E.A., O'Kane, D. F., and Burns, G., J. Am. Ceram. Soc. 53, 106 (1970).Google Scholar
3.Pouchard, M., Chaminade, J-P., Perron, A., Ravez, J., and Hagenmuller, P., J. Solid State Chem. 14, 274 (1975).Google Scholar
4.Ikeda, T., Uno, K., Oyamada, K., Sagara, A., Kato, J., Takano, S., and Sato, H., Jpn. J. Appl. Phys. 17, 341 (1978).Google Scholar
5.Neurgaonkar, R. R., Cory, W. K., and Oliver, J. R., Ferroelectrics 51, 3 (1983).Google Scholar
6.Neurgaonkar, R. R., Oliver, J. R., and Cross, L. E., Ferroelectrics 56, 31 (1984).Google Scholar
7.Neurgaonkar, R.R. and Cory, W.K., J. Opt. Soc. Am. B 3, 274 (1986).Google Scholar
8.Giess, E.A., Burns, G., O'Kane, D. F., and Smith, A.W., Appl. Phys. Lett. 11, 233 (1967).Google Scholar
9.Clarke, R. and Ainger, F. W., Ferroelectrics 7, 101 (1974).CrossRefGoogle Scholar
10.Kimura, T., Miyamoto, S., and Yamaguchi, T., J. Am. Ceram. Soc. 73, 127 (1990).CrossRefGoogle Scholar
11.Boufrou, B., Desgardin, G., and Raveau, B., J. Am. Ceram. Soc. 74, 2809 (1991).Google Scholar
12.Kimura, T., Saibol, S., and Nagata, K., J. Ceram. Soc. Jpn. 103, 132 (1995).Google Scholar
13.Neurgaonkar, R.R., Ho, W.W., Cory, W.K., and Hall, W.F., Ferroelectrics 51, 185 (1984).CrossRefGoogle Scholar
14.Neurgaonkar, R. R., Cory, W. K., and Oliver, J. R., Ferroelectrics 142, 167 (1993).CrossRefGoogle Scholar
15.Francombe, M.H., Thin Solid Films 13, 413 (1972).Google Scholar
16.Sheppard, L.M., Am. Ceram. Soc. Bull. 71, 85 (1992).Google Scholar
17.Hirano, S., Yogo, T., Kikuta, K., Kato, K., Sakamoto, W., and Ogasawara, S., Ceram. Trans. 25, 19 (1991).Google Scholar
18.Hirano, S., Yogo, T., Kikuta, K., Urahata, H., Isobe, Y., Morishita, T., Ogiso, K., and Ito, Y., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M. J., Klemperer, W.G., and Brinker, C. J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 331.Google Scholar
19.Hirano, S., Yogo, T., Kikuta, K., and Ogiso, K., J. Am. Ceram. Soc. 75, 1697 (1992).Google Scholar
20.Hirano, S., Yogo, T., Kikuta, K., Morishita, T., and Ito, Y., J. Am. Ceram. Soc. 75, 1701 (1992).CrossRefGoogle Scholar
21.Mackenzie, J. D., J. Sol-Gel Sci. Technol. 1, 7 (1993).CrossRefGoogle Scholar
22.Yogo, T., Kikuta, K., Ito, Y., and Hirano, S., J. Am. Ceram. Soc. 78, 2175 (1995).CrossRefGoogle Scholar
23.Sakamoto, W., Yogo, T., Kikuta, K., Arimoto, T., and Hirano, S., J. Am. Ceram. Soc. 79, 889 (1996).Google Scholar
24.Sakamoto, W., Yogo, T., Kikuta, K., Ogiso, K., Kawase, A., and Hirano, S., J. Am. Ceram. Soc. 79, 2283 (1996).CrossRefGoogle Scholar
25.Iijima, K., Takayama, R., Tomita, Y., and Ueda, I., J. Appl. Phys. 60, 2914 (1986).Google Scholar
26.Mehrotra, R.C., Agrawal, M. M., and Kapoor, P. N., J. Chem. Soc. A, 2673 (1968).Google Scholar
27.Govil, S., Kapoor, P. N., and Mehrotra, R. C., J. Inorg. Nucl. Chem. 38, 172 (1976).CrossRefGoogle Scholar
28.Rehder, D., in Multinuclear NMR, edited by Mason, J. (Plenum Press, New York, 1987).Google Scholar
29.Burns, G., Axe, J.D., and O'Kane, D.F., Solid State Commun. 7, 933 (1969).CrossRefGoogle Scholar
30.Thony, S. S., Youden, K. E., Harris, J. S. Jr, and Hesselink, L., Appl. Phys. Lett. 65, 2018 (1994).Google Scholar