Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:50:37.620Z Has data issue: false hasContentIssue false

Synthesis of AlN nanowires by nitridation of Ti3Si0.9Al0.1C2 solid solution

Published online by Cambridge University Press:  03 March 2011

H.B. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
J. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Y.C. Zhou*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Y.W. Bao
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
M.S. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: yczhou@imr.ac.cn
Get access

Abstract

This paper describes a new method to synthesize AlN nanowires by the nitridation of Ti3Si0.9Al0.1C2 solid solution. Single-crystalline AlN nanowires with the hexagonal wurtzite structure can be easily prepared using this method. In particular, the resulting AlN nanowires display a new growth orientation of 〈1011〉 besides 〈1000〉 and 〈0001〉. This work indicates that MN+1AXN compounds are promising raw reactants to synthesize one-dimensional (1D) nanostructures of nitrides and oxides.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Barsoum, M.W.: The MN+1AXN Phases: A new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000).CrossRefGoogle Scholar
2Low, I.M.: Depth profiling of phase composition in a novel Ti3SiC2–TiC system with graded interfaces. Mater. Lett. 58, 927 (2004).CrossRefGoogle Scholar
3Barsoum, M.W., El-Raghy, T., Farber, L., Amer, M., Christini, R., and Adams, A.: The topotactic transformation of Ti3SiC2 into a partially ordered cubic Ti(C0.67Si0.06) phase by the diffusion of Si into molten cryolite. J. Electrochem. Soc. 146, 3919 (1999).CrossRefGoogle Scholar
4Gu, W.L., Yan, C.K., and Zhou, Y.C.: Reaction between Al and Ti3SiC2 in temperature range of 600–650 °C. Scripta Mater. 49, 1075 (2003).CrossRefGoogle Scholar
5El-Raghy, T. and Barsoum, M.W.: Diffusion kinetics of the carburization and silicidation of Ti3SiC2. J. Appl. Phys. 83, 112 (1998).CrossRefGoogle Scholar
6Wang, X.H. and Zhou, Y.C.: Stability and selective oxidation of aluminum in nano-laminate Ti3AlC2 upon heating in argon. Chem. Mater. 15, 3716 (2003).CrossRefGoogle Scholar
7Barsoum, M.W. and Farber, L.: Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN. Science 284, 937 (1999).CrossRefGoogle ScholarPubMed
8Barsoum, M.W., Hoffman, E.N., Doherty, R.D., Gupta, S., and Zavaliangos, A.: Driving force and mechanism for spontaneous metal whisker formation. Phys. Rev. Lett. 93 206104-1 (2004).CrossRefGoogle ScholarPubMed
9Sun, Z.M., Zhen, T.J., and Barsoum, M.W.: Creep rupture induced silica-based nanofibers formed on fracture surface of Ti3SiC2. J. Mater. Res. 20, 2895 (2005).CrossRefGoogle Scholar
10Zhou, Y.C., Zhang, H.B., Liu, M.Y., Wang, J.Y., and Bao, Y.W.: Preparation of TiC free Ti3SiC2 with improved oxidation resistance by substitution of Si with Al. Mater. Res. Innov. 8, 97 (2004).CrossRefGoogle Scholar
11Liu, J., Zhang, X., Zhang, Y., He, R., and Zhu, J.: Novel synthesis of AlN nanowires with controlled diameters. J. Mater. Res. 16, 3133 (2001).CrossRefGoogle Scholar
12Zhang, Y.J., Liu, J., He, R.R., and Zhang, Q.: Synthesis of aluminum nitride nanowires from carbon nanotubes. Chem. Mater. 13, 3899 (2001).CrossRefGoogle Scholar
13Caceres, P.G. and Schmid, H.K.: Morphology and crystallography of aluminum nitride whiskers. J. Am. Ceram. Soc. 77, 977 (1994).CrossRefGoogle Scholar
14Wang, J.Y. and Zhou, Y.C.: First-principle study of equilibrium properties and electronic structure of Ti3Si0.75Al0.25C2 solid solution. J. Phys. Condens. Matter. 15, 5959 (2003).CrossRefGoogle Scholar
15Zhang, H.B., Zhou, Y.C., Bao, Y.W., and Li, M.S.: Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.9Al0.1C2 solid solution. Acta Mater. 52, 3631 (2004).CrossRefGoogle Scholar
16Tang, Y.B., Cong, H.T., Zhao, Z.G., and Cheng, H.M.: Field emission from AlN nanorod array. Appl. Phys. Lett. 86 153104-1 (2005).CrossRefGoogle Scholar
17Wu, Q., Hu, Z., Wang, X.Z., Hu, Y.M., Tian, Y.J., and Chen, Y.: A simple route to aligned AlN nanowires. Diamond Relat. Mater. 13, 38 (2004).CrossRefGoogle Scholar
18Tang, C.C., Fan, S.S., Chapelle, M.L., and Li, P.: Silica-assisted catalytic growth of oxide and nitride nanowires. Chem. Phys. Lett. 333, 12 (2001).CrossRefGoogle Scholar