Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T22:11:27.722Z Has data issue: false hasContentIssue false

Synthesis, growth mechanism, and morphology control of LiFe1/3Mn1/3Co1/3PO4 via a microwave-assisted hydrothermal method

Published online by Cambridge University Press:  23 March 2015

Kunpeng Wang*
Affiliation:
Kirchhoff Institute for Physics, Heidelberg University, Heidelberg D-69120, Germany
Alexander Ottmann
Affiliation:
Kirchhoff Institute for Physics, Heidelberg University, Heidelberg D-69120, Germany
Jianxiu Zhang
Affiliation:
Kirchhoff Institute for Physics, Heidelberg University, Heidelberg D-69120, Germany
Hans-Peter Meyer
Affiliation:
Institute of Earth Sciences, Heidelberg University, Heidelberg D-69120, Germany
Rüdiger Klingeler
Affiliation:
Kirchhoff Institute for Physics, Heidelberg University, Heidelberg D-69120, Germany; and Centre for Advanced Materials, Heidelberg University, Heidelberg D-69120, Germany
*
a)Address all correspondence to this author. e-mail: kunpeng.wang@kip.uni-heidelberg.de
Get access

Abstract

LiFe1/3Mn1/3Co1/3PO4 (LFMC) has been synthesized by a microwave-assisted hydrothermal technique. During the crystal growth, two evolutionary routes coexist and compete with each other after the nuclei have been stably formed. One of them is the continuous growth of single particles and the other one is agglomeration. The size and morphology of the products are determined by the interplay of the two competing routes. The growth morphology is quantitatively analyzed from first principle calculations. A phase diagram is constructed, which guides to control the morphology by adjusting CM and pH. Static magnetic properties imply long range antiferromagnetic order below TN = 39 K and a paramagnetic Curie–Weiss-like behavior with θ = 75 K and peff = 5.51 μB at high temperatures. Cyclic voltammetry shows two distinct peaks corresponding to the Fe2+/Fe3+ and Co2+/Co3+ redox couples, respectively, whereas the Mn2+/Mn3+ redox couple is not observed due to its sluggish kinetics induced by the Jahn–Teller effect of Mn3+.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tarascon, J.M. and Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).CrossRefGoogle ScholarPubMed
Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).CrossRefGoogle ScholarPubMed
Goodenough, J.B. and Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).CrossRefGoogle Scholar
Goodenough, J.B.: Cathode materials: A personal perspective. J. Power Sources 174, 996 (2007).CrossRefGoogle Scholar
Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).CrossRefGoogle Scholar
Yamada, A., Hosoya, M., Chung, S.C., Kudo, Y., Kinokuma, K., Liu, K.Y., and Nishi, Y.: Olivine-type cathodes: Achievements and problems. J. Power Sources 119, 232 (2003).CrossRefGoogle Scholar
Amine, K., Yasuda, H., and Yamachi, M.: Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochem. Solid-State Lett. 3, 178 (2000).CrossRefGoogle Scholar
Wolfenstine, J. and Allen, J.: Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources 142, 389 (2005).CrossRefGoogle Scholar
Huang, H., Yin, S.C., and Nazar, L.F.: Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 4, A170 (2001).CrossRefGoogle Scholar
Zane, D., Carewska, M., Scaccia, S., Cardellini, F., and Prosini, P.P.: Factor affecting rate performance of undoped LiFePO4. Electrochim. Acta. 49, 4259 (2004).CrossRefGoogle Scholar
Yonemura, M., Yamada, A., Takei, Y., Sonoyama, N., and Kanno, R.: Comparative kinetic study of olivine LixMPO4 (M = Fe, Mn). J. Electrochem. Soc. 151, A1352 (2004).CrossRefGoogle Scholar
Rudisch, C., Grafe, H.J., Geck, J., Partzsch, S., Zimmermann, M.V., Wizent, N., Klingeler, R., and Büchner, B.: Coupling of Li motion and structural distortions in olivine LiMnPO4 from 7Li and 31P NMR. Phys. Rev. B 88, 054303 (2013).CrossRefGoogle Scholar
Li, H.H., Jin, J., Wei, J.P., Zhou, Z., and Yan, J.: Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances. Electrochem. Commun. 11, 95 (2009).CrossRefGoogle Scholar
Wolfenstine, J. and Allen, J.: LiNiPO4–LiCoPO4 solid solutions as cathodes. J. Power Sources 136, 150 (2004).CrossRefGoogle Scholar
Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303 (2004).CrossRefGoogle ScholarPubMed
Yamada, A., Takei, Y., Koizumi, H., Sonoyama, N., and Kanno, R.: Electrochemical, magnetic, and structural investigation of the Lix(MnyFe1-y)PO4 olivine phases. Chem. Mater. 18, 804 (2006).CrossRefGoogle Scholar
Yamada, A., Kudo, Y., and Liu, K.Y.: Reaction mechanism of the olivine-type Lix(Mn0.6Fe0.4)PO4 (0 ≤ x ≤ 1). J. Electrochem. Soc. 148, A747 (2001).CrossRefGoogle Scholar
Chen, J., Vacchio, M.J., Wang, S., Chernova, N., Zavalij, P.Y., and Whittingham, M.S.: The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics 178, 1676 (2008).CrossRefGoogle Scholar
Gwon, H., Seo, D.H., Kim, S.W., Kim, J., and Kang, K.: Combined first-principle calculations and experimental study on multi-component olivine cathode for lithium rechargeable batteries. Adv. Funct. Mater. 19, 3285 (2009).CrossRefGoogle Scholar
Zhang, Y., Sun, C.S., and Zhou, Z.: Sol–gel preparation and electrochemical performances of LiFe1/3Mn1/3Co1/3PO4/C composites with core–shell nanostructure. Electrochem. Commun. 11, 1183 (2009).CrossRefGoogle Scholar
Chen, Y.C., Chen, J.M., Hsu, C.H., Lee, J.J., Lin, T.C., Yeh, J.W., and Shih, H.C.: Electrochemical and structural studies of LiCo1/3Mn1/3Fe1/3PO4 as a cathode material for lithium ion batteries. J. Power Sources 195, 6867 (2010).CrossRefGoogle Scholar
Yoshimura, M. and Byrappa, K.: Hydrothermal processing of materials: Past, present and future. J. Mater. Sci. 43, 2085 (2008).CrossRefGoogle Scholar
Yang, S., Zavalij, P.Y., and Whittingham, M.: Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem. Commun. 3, 505 (2001).CrossRefGoogle Scholar
Chen, J., Wang, S., and Whittingham, M.: Hydrothermal synthesis of cathode materials. J. Power Sources 174, 442 (2007).CrossRefGoogle Scholar
Delacourt, C., Poizot, P., Morcrette, M., Tarascon, J.M., and Masquelier, C.: One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem. Mater. 16, 93 (2004).CrossRefGoogle Scholar
Dokko, K., Koizumi, S., Koizumi, H., and Kanamura, K.: Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. J. Mater. Chem. 17, 4803 (2007).CrossRefGoogle Scholar
Recham, N., Armand, M., Laffont, L., and Tarascon, J.M.: Eco-efficient synthesis of LiFePO4 with different morphologies for Li-ion batteries. Electrochem. Solid-State Lett. 12, A39 (2009).CrossRefGoogle Scholar
Neef, C., Jähne, C., Meyer, H-P., and Klingeler, R.: Morphology and agglomeration control of LiMnPO4 micro- and nanocrystals. Langmuir 29, 8054 (2013).CrossRefGoogle ScholarPubMed
Jähne, C., Klingeler, R.: Microwave-assisted and conventional hydrothermal synthesis. Solid State Sci. 14, 941 (2012).CrossRefGoogle Scholar
Wang, Y.Q., Zhang, D.Y., Chang, C.K., Deng, L., and Huang, K.J.: Controllable growth of LiFePO4 microplates of (010) and (001) lattice planes for Li ion batteries: A case of the growth manner on the Li ion diffusion coefficient and electrochemical performance. Mater. Chem. Phys. 148, 933 (2014).CrossRefGoogle Scholar
Huang, X.J., Yan, S.J., Zhao, H.Y., Zhang, L., Guo, R., Chang, C.K., Kong, X.Y., and Han, H.B.: Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Mater. Charact. 61, 720 (2010).CrossRefGoogle Scholar
Bilecka, I. and Niederberger, M.: Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2, 1358 (2010).CrossRefGoogle ScholarPubMed
Manthiram, A., Murugan, A.V., Sarkar, A., and Muraliganth, T.: Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1, 621 (2008).CrossRefGoogle Scholar
Murugan, A.V., Muraliganth, T., Ferreira, P.J., and Manthiram, A.: Dimensionally modulated, single-crystalline LiMPO4 (M = Mn, Fe, Co and Ni) with nano-thumblike shapes for high-power energy storage. Inorg. Chem. 48, 946 (2009).CrossRefGoogle Scholar
Jähne, C., Neef, C., Koo, C., Meyer, H-P., and Klingeler, R.: A new LiCoPO4 polymorph via low temperature synthesis. J. Mater. Chem. A 1, 2856 (2013).CrossRefGoogle Scholar
Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D.: Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).CrossRefGoogle Scholar
Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).CrossRefGoogle Scholar
Wang, K.P., Fang, C.S., Zhang, J.X., Liu, C.S., Boughton, R.I., Wang, S.L., and Zhao, X.: First-principles study of interstitial oxygen in potassium dihydrogen phosphate crystals. Phys. Rev. B 72, 184105 (2005).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Majchrowski, A., Borowiec, M.T., and Michalski, E.J.: Top seeded solution growth of KHo(WO4)2 single crystals. J. Cryst. Growth 264, 201 (2004).CrossRefGoogle Scholar
Larson, A.C. and Dreele, R.B.: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, 1994; p. 86.Google Scholar
Park, Y., Kim, J., Gwon, H., Seo, D.H., Kim, S.W., and Kang, K.: Synthesis of multicomponent olivine by a novel mixed transition metal oxalate coprecipitation method and electrochemical characterization. Chem. Mater. 22, 2573 (2010).CrossRefGoogle Scholar
Wang, X.J., Yu, X.Q., Li, H., Yang, X.Q., Mcbreen, J., and Huang, X.J.: Li-storage in LiFe1/4Mn1/4Co1/4Ni1/4PO4 solid solution. Electrochem. Commun. 10, 1347 (2008).CrossRefGoogle Scholar
Younesi, R., Malmgren, S., Edström, K., and Tan, S.: Influence of annealing temperature on the electrochemical and surface properties of the 5-V spinel cathode material LiCr0.2Ni0.4Mn1.4O4 synthesized by a sol–gel technique. J. Solid State Electrochem. 18, 2157 (2014).CrossRefGoogle Scholar
Hartman, P. and Perdok, W.G.: On the relations between structure and morphology of crystals. I. Acta Cryst. 8, 49 (1955).CrossRefGoogle Scholar
Docherty, R., Clydesdale, G., Roberts, K.J., and Bennema, P.: Application of Bravais-Friedel-Donnay-Harker, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals. J. Phys. D: Appl. Phys. 24, 89 (1991).CrossRefGoogle Scholar
Dekkers, R. and Woensdregt, C.F.: Crystal structural control on surface topology and crystal morphology of normal spinel (MgAl2O4). J. Cryst. Growth 236, 441 (2002).CrossRefGoogle Scholar
Wang, K.P., Sun, D.L., Zhang, J.X., Yu, W.T., Liu, H., Hu, X.B., Guo, S.Y., and Geng, Y.L.: Spiral growth mechanisms of CMTD crystals. J. Cryst. Growth 261, 63 (2004).CrossRefGoogle Scholar
Wang, K.P., Zhang, J.X., Wang, J.Y., Yu, W.T., Zhang, H.J., Wang, Z.P., and Ba, M.F.: Investigation of growth mechanisms of TSS-grown KLu(WO4)2 crystals by atomic force microscopy. Opt. Mater. 29, 421 (2006).CrossRefGoogle Scholar
Chen, D.P., Wang, X., Hu, Y.S., Lin, C.T., Dou, S.X., and Nigam, R.: Magnetic anisotropy in doped and undoped LiFePO4 single crystals. J. Appl. Phys. 101, 09N512 (2007).CrossRefGoogle Scholar
Santoro, R.P. and Newnham, R.E.: Antiferromagnetism in LiFePO4. Acta Crystallogr. 22, 344 (1967).CrossRefGoogle Scholar
Szewczyk, A., Gutowska, M.U., Wieckowski, J., Wisniewski, A., Puzniak, R., Diduszko, R., Kharchenko, Yu., Kharchenko, M.F., and Schmid, H.: Phase transitions in single-crystalline magnetoelectric LiCoPO4. Phys. Rev. B 84, 104419 (2011).CrossRefGoogle Scholar
Baek, S.H., Klingeler, R., Neef, C., Koo, C., Büchner, B., and Grafe, H.J.: Unusual spin fluctuations and magnetic frustration in olivine and non-olivine LiCoPO4 detected by 31P and 7Li nuclear magnetic resonance. Phys. Rev. B 89, 134424 (2014).CrossRefGoogle Scholar
Wizent, N., Behr, G., Lipps, F., Hellmann, I., Klingeler, R., Kataev, V., Löser, W., Sato, N., and Büchner, N.: Single-crystal growth of LiMnPO4 by the floating-zone method. J Cryst Growth. 311, 1273 (2009).CrossRefGoogle Scholar
Santoro, R.P., Segal, D.J., and Newnham, R.E.: Magnetic properties of LiCoPO4 and LiNiPO4. J. Phys. Chem. Solids 27, 1192 (1966).CrossRefGoogle Scholar
Nie, Z., Ouyang, C., Chen, J., Zhong, Z., Du, Y., Liu, D., Shi, S., and Lei, M.: First principles study of Jahn–Teller effects in LixMnPO4. Solid State Commun. 150, 40 (2010).CrossRefGoogle Scholar