Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T01:04:54.827Z Has data issue: false hasContentIssue false

Synthesis, characterization, and magnetic properties of FeCoNi ternary alloy nanowire arrays

Published online by Cambridge University Press:  01 December 2004

Gaurav Sharma
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Craig A. Grimes*
Affiliation:
Department of Materials Science and Engineering, and Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
*
a) Address all correspondence to this author. e-mail: cgrimes@engr.psu.edu
Get access

Abstract

FeCoNi ternary alloy nanowire arrays 32–106 nm in diameter were fabricated within nanoporous alumina membranes using 15 Vrms alternating current electrodeposition at frequencies of 50, 250, 500, 750, and 1000 Hz. The magnetic coercivity and hysteresis loop squareness-ratio (Mr/Ms) were studied as functions of electrolyte composition, nanowire diameter, and nanowire aspect ratio.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Manalis, S., Babcock, K., Massie, J., Elings, V. and Dugas, M.: Submicron studies of recording media using thin-film magnetic scanning probes. Appl. Phys. Lett. 66, 2585 (1995).CrossRefGoogle Scholar
2Chou, S.Y., Wei, M.S., Krauss, P.R. and Fisher, P.B.: Single-domain magnetic pillar array of 35 nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage. J. Appl. Phys. 76, 6673 (1994).CrossRefGoogle Scholar
3Citrin, D.S.: Magnetic Bloch oscillations in nanowire superlattice rings. Phys. Rev. Lett. 92: Art. No. 196803 (2004). Prof. Beth Stadler, University of Minnesota, private communication.Google Scholar
4Whitney, T.M., Jiang, J.S., Searson, P.C. and Chien, C.L.: Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316 (1993).CrossRefGoogle ScholarPubMed
5Paulus, P.M., Luis, F., Kroll, M., Schmid, G. and de Jongh, L.J.: Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. J. Magn. Magn. Mater. 224, 180 (2001).CrossRefGoogle Scholar
6Fodor, P.S., Tsoi, G.M. and Wenger, L.E.: Fabrication and characterization of Co1-xFex alloy nanowires. J. Appl. Phys. 91, 8186 (2002).Google Scholar
7Zhu, H., Yang, S., Ni, G., Yu, D. and Du, Y.: Fabrication and magnetic properties of Co67Ni33 alloy nanowire array. Scripta Mater. 44, 2291 (2001).CrossRefGoogle Scholar
8Khan, H.R. and Petrikowski, K.: Anisotropic structural and magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina. J. Magn. Magn. Mater. 215, 526 (2000).Google Scholar
9Osaka, T., Takai, M., Hayashi, K., Ohashi, K., Saito, M. and Yamada, K.: A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 392, 796 (1998).Google Scholar
10Tabakovic, I., Riemer, S., Inturi, V., Jallen, P. and Thayer, A.: Organic additives in the electrochemical preparation of soft magnetic CoNiFe films. J. Electrochem. Soc. 147, 219 (2000).CrossRefGoogle Scholar
11Liu, X., Zangari, G. and Shen, L.: Electrodeposition of soft, high moment Co-Fe-Ni films. J. Appl. Phys. 87, 5410 (2000).CrossRefGoogle Scholar
12O’Sullivan, J.P. and Wood, G.C.: The morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. London, Series A Math. Phys. Sci. 317, 511 (1970).Google Scholar
13Jessensky, O., Muller, F. and Gosele, U.: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173 (1998).CrossRefGoogle Scholar
14Masuda, H., Yamada, H., Satoh, M. and Asoh, H.: Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997).CrossRefGoogle Scholar
15Arurault, L. and Bes, R.S.: Kinetics of metallic electrochemical impregnation of porous anodic oxidation layer on 1050 and 2024 aluminum alloys. Adv. Eng. Mater. 5, 433 (2003).CrossRefGoogle Scholar
16Sharma, G., Mor, G.K., Varghese, O.K., Paulose, M. and Grimes, C.A.: Synthesis and characterization of extremely uniform Fe-Co-Ni ternary alloy nanowire arrays. J. Nanosci. Nanotechnol. 4, 738 (2004).CrossRefGoogle ScholarPubMed
17Jen, S.U., Chiang, H.P., Chung, C.M. and Kao, M.N.: Magnetic properties of Co-Fe-Ni films. J. Magn. Magn. Mater. 236, 312 (2001).CrossRefGoogle Scholar
18Liu, X., Evans, P. and Zangari, G.: Electrodeposited, high-moment magnetic alloys for recording write heads. J. Magn. Magn. Mater. 226, 2073 (2001).Google Scholar
19Prieto, A.L., Sander, M.S., Martin-Gonzalez, M.S., Gronsky, R., Sands, T. and Stacy, A.M.: Electrodeposition of ordered Bi2Te3 nanowire arrays. J. Am. Chem. Soc. 123, 7160 (2001).CrossRefGoogle ScholarPubMed
20Yin, A.J., Li, J., Jian, W., Bennett, A.J. and Xu, J.M.: Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 79, 1039 (2001).Google Scholar
21O’Handley, R.C.: Modern Magnetic Materials: Principles and Applications (Wiley-Interscience Publication, New York, NY, 2000) p. 43.Google Scholar
22Cullity, B.D.: Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972).Google Scholar
23Goodenough, J.B.: A theory of domain creation and coercive force in polycrystalline ferromagnetics. Phys. Rev. 95, 917 (1954).Google Scholar
24Frei, E.H., Shtrikman, S. and Treves, D.: Critical size and nucleation field of ideal ferromagnetic particles. Phys. Rev. 106, 446 (1957).CrossRefGoogle Scholar
25Stoner, E.C. and Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. Roy. Soc. A 240, 599 (1948).Google Scholar
26Zeng, H., Zheng, M., Skomski, R., Sellmyer, D.J., Liu, Y., Menon, L. and Bandyopadhyay, S.: Magnetic properties of self-assembled Co nanowires of varying length and diameter. J. Appl. Phys. 87, 4718 (2000).CrossRefGoogle Scholar
27Sellmyer, D.J., Zheng, M., and Skomski, R.: Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys: Condens. Matter 13, R433 (2001).Google Scholar
28Zeng, H., Skomski, R., Menon, L., Liu, Y., Bandopadhyay, S. and Sellmyer, D.J.: Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B 65, 134426 (2002).Google Scholar
29Zhuang, Y. and Podlaha, E.J.: NiCoFe ternary alloy depsosition I. An experimental kinetic study. J. Electrochem. Soc. 147, 2231 (2000).CrossRefGoogle Scholar
30Zhuang, Y. and Podlaha, E.J.: NiCoFe ternary alloy deposition III. A mathematical model. J. Electrochem. Soc. 150, C225 (2003).Google Scholar
31Nakanishi, T., Ozaki, M., Nam, H-S., Yokoshima, T. and Osaka, T.: Pulsed electrodeposition of nanocrystalline CoNiFe soft magnetic thin films. J. Electrochem. Soc. 150, C627 (2001).Google Scholar
32Tabakovic, I., Inturi, V. and Riemer, S.: Composition, structure, stress, and coercivity of electrodeposited soft magnetic CoNiFe films. J. Electrochem. Soc. 149, C18 (2002).CrossRefGoogle Scholar