Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T04:43:56.156Z Has data issue: false hasContentIssue false

Synthesis and upconversion luminescence properties of CaF2:Yb3+,Er3+ nanoparticles obtained from SBA-15 template

Published online by Cambridge University Press:  31 January 2011

Peng Du
Affiliation:
School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, People's Republic of China
Get access

Abstract

CaF2:Yb3+,Er3+ upconversion (UC) luminescence nanoparticles have been synthesized using mesoporous silica (SBA-15) as a hard template. The samples were characterized by x-ray diffraction, Fourier transform infrared spectra, field-emission scanning electron microscopy, transmission electron microscopy, and UC emission spectra, respectively. Highly crystalline cubic phase CaF2:Yb3+,Er3+ nanoparticles are uniformly distributed with an average diameter of about 40–50 nm, and the formation process is also demonstrated. The UC fluorescence has been realized in the as-prepared CaF2:Yb3+,Er3+ nanoparticles on 980-nm excitation. The UC emission transitions for 4F9/24I15/2 (red), 2H11/24I15/2 (green), 4S3/24I15/2 (green), and 2H9/24I15/2 (violet) in the Yb3+/Er3+ codoped CaF2 nanoparticles depending on pumping power and temperature have been discussed. The UC mechanism, especially the origin on the temperature-dependent UC emission intensities ratio between 2H11/2 and 4S3/2 levels, have been proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, F., Liu, X.G.Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976 (2009)CrossRefGoogle ScholarPubMed
2.Zeng, J.H., Li, Z.H., Su, J., Wang, L.Y., Li, Y.D.Synthesis of complex rare earth fluoride nanocrystal phosphors. Nanotechnology 17, 3549 (2006)CrossRefGoogle ScholarPubMed
3.Quan, Z.W., Yang, D.M., Yang, P.P., Zhang, X.M., Lian, H.Z., Liu, X.M., Lin, J.Uniform colloidal alkaline earth metal fluoride nanocrystals: Nonhydrolytic synthesis and luminescence properties. Inorg. Chem. 47, 9509 (2008)CrossRefGoogle ScholarPubMed
4.Kaczmarek, S.M., Tsuboi, T., Ito, M., Boulon, G., Leniec, G.Optical study of Yb3+/Yb2+ conversion in CaF2 crystals. J. Phys. Condens. Matter 17, 3771 (2005)CrossRefGoogle Scholar
5.Wang, F., Fan, X.P., Pi, D.B., Wang, M.Q.Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles. Solid State Commun. 133, 775 (2005)CrossRefGoogle Scholar
6.Labéguerie, J., Gredina, P., Mortier, M., Patriarche, G., de Kozak, A.Synthesis of fluoride nanoparticles in non-aqueous nanoreactors: Luminescence study of Eu3+:CaF2. Z. Anorg. Allg. Chem. 632, 1538 (2006)CrossRefGoogle Scholar
7.Zhang, X.M., Quan, Z.W., Yang, J., Yang, P.P., Lian, H.Z., Lin, J.Solvothermal synthesis of well-dispersed MF2 (M = Ca, Sr, Ba) nanocrystals and their optical properties. Nanotechnology 19, 075603 (2008)CrossRefGoogle ScholarPubMed
8.Wang, W.S., Zhen, L., Xu, C.Y., Chen, J.Z., Shao, W.Z.Aqueous solution synthesis of CaF2 hollow microspheres via the Ostwald ripening process at room temperature. ACS Appl. Mater. Interfaces 1, 780 (2009)CrossRefGoogle ScholarPubMed
9.Feldmann, C., Roming, M., Trampert, K.Polyol-mediated synthesis of nanoscale CaF2 and CaF2:Ce,Tb. Small 2, 1248 (2006)CrossRefGoogle ScholarPubMed
10.Kumar, G.A., Chen, C.W., Rimana, R.E.Optical spectroscopy and confocal fluorescence imaging of upconverting Er3+-doped CaF2 nanocrystals. Appl. Phys. Lett. 90, 093123 (2007)CrossRefGoogle Scholar
11.Cao, C.Y., Qin, W.P., Zhang, J.S., Wang, Y., Wang, G.F., Wei, G.D., Zhu, P.F., Wang, L.L., Jin, L.Z.Up-conversion white light of Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors. Opt. Commun. 281, 1716 (2008)CrossRefGoogle Scholar
12.Wang, G.F., Peng, Q., Li, Y.D.Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131, 14200 (2009)CrossRefGoogle Scholar
13.Bensalah, A., Mortier, M., Patriarche, G., Gredin, P., Vivien, D.Synthesis and optical characterizations of undoped and rare-earth-doped CaF2 nanoparticles. J. Solid State Chem. 179, 2636 (2006)CrossRefGoogle Scholar
14.Zhang, F., Wan, Y., Shi, Y.F., Tu, B., Zhao, D.Y.Ordered mesostructured rare-earth fluoride nanowire arrays with upconversion fluorescence. Chem. Mater. 20, 3778 (2008)CrossRefGoogle Scholar
15.Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredirckson, G.H., Chemlka, B.F., Stucky, G.D.Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998)CrossRefGoogle Scholar
16.Holland, T.J.B., Redfern, S.A.T.Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineral. Mag. 61, 65 (1997)CrossRefGoogle Scholar
17.Cullity, B.D.Elements of X-ray Diffraction 2nd ed. (Wesley Publishing CompanyInc., Menlo Park, CA 1978)Google Scholar
18.Hiramatsu, H., Osterloh, F.E.pH controlled assembly and disassembly of electrostatically linked CdSe–SiO2 and Au–SiO2 nanoparticle clusters. Langmuir 19, 7003 (2003)CrossRefGoogle Scholar
19.Li, C.X., Yang, J., Yang, P.P., Lian, H.Z., Lin, J.Hydrothermal synthesis of lanthanide fluorides LnF3 (Ln = La to Lu) nano-/microcrystals with multiform structures and morphologies. Chem. Mater. 20, 4317 (2008)CrossRefGoogle Scholar
20.Zhao, L., Yu, J.G.Controlled synthesis of highly dispersed TiO2 nanoparticles using SBA-15 as hard template. J. Colloid Interface Sci. 304, 84 (2006)CrossRefGoogle ScholarPubMed
21.Liu, C.H., Sun, J., Wang, H., Chen, D.P.Size and morphology controllable synthesis of oil-dispersible LaF3:Yb,Er upconversion fluorescent nanocrystals via a solid–liquid two-phase approach. Scr. Mater. 58, 89 (2008)CrossRefGoogle Scholar
22.Dai, Q.L., Song, H.W., Ren, X.G., Lu, S.Z., Pan, G.H., Bai, X., Dong, B., Qin, R.F., Qu, X.S., Zhang, H.Structure and upconversion luminescence of hydrothermal PbWO4:Er3+,Yb3+ powders. J. Phys. Chem. C 112, 19694 (2008)CrossRefGoogle Scholar
23.Pollnau, M., Gamelin, D.R., Lüthi, S.R., Güdel, H.U.Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337 (2000)CrossRefGoogle Scholar
24.Tripathi, G., Rai, V.K., Rai, S.B.Upconversion and temperature sensing behavior of Er3+ doped Bi2O3–Li2O–BaO–PbO tertiary glass. Opt. Mater. 30, 201 (2007)CrossRefGoogle Scholar