Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T21:53:33.807Z Has data issue: false hasContentIssue false

Synthesis and Thermal Analyses of TiO2-Derived Nanotubes Prepared by the Hydrothermal Method

Published online by Cambridge University Press:  03 March 2011

Yoshikazu Suzuki*
Affiliation:
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
Susumu Yoshikawa
Affiliation:
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
*
a)Address all correspondence to this author. e-mail: suzuki@iae.kyoto-u.ac.jp
Get access

Abstract

TiO2-derived nanotubes were prepared by hydrothermal treatment of TiO2 powder in NaOH aqueous solution. High-temperature x-ray diffraction (HT-XRD) andthermogravimetry-differential thermal analysis (TG-DTA) demonstrated the formation of TiO2 (B) phase (a metastable polymorph of titanium dioxide) from the nanotubes under heating at ∼800 °C, which indicates the as-prepared nanotubes should be composed of layered titanate, most probably as H2Ti3O7·nH2O (n < 3). Dehydration behavior and phase transformation confirmed by the HT-XRD study have suggested reliable reaction path and have well-solved the contradictions on the nanotube-formation mechanism among previous studies.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K.: Formation of Titanium Oxide Nanotube. Langmuir. 14, 3160 (1998).CrossRefGoogle Scholar
2Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K.: Titania Nanotubes Prepared by Chemical Processing. Adv. Mater. 11, 1307 (1999).3.0.CO;2-H>CrossRefGoogle Scholar
3Seo, D-S., Lee, J-K. and Kim, H.: Preparation of Nanotube-Shaped TiO2 Powder. J. Cryst. Growth. 229, 428 (2001).CrossRefGoogle Scholar
4Zhang, Q.H., Gao, L.A., Sun, J. and Zheng, S.: Preparation of Long TiO2 Nanotubes from Ultrafine Rutile Nanocrystals. Chem. Lett. 31, 226 (2002).CrossRefGoogle Scholar
5Lin, C.H., Chien, S.H., Chao, J.H., Sheu, C.Y., Cheng, Y.C., Huang, Y.J. and Tsai, C.H.: The Synthesis of Sulfated Titanium Oxide Nanotubes. Catal. Lett. 80, 153 (2002).CrossRefGoogle Scholar
6Mao, Y.B., Banerjee, S., and Wong, S.S.: Hydrothermal Synthesis of Perovskite Nanotubes, Chem Comm., 408 (2003).Google Scholar
7Wang, Y.Q., Hu, G.Q., Duan, X.F., Sun, H.L. and Xue, Q.K.: Microstructure and Formation Mechanism of Titanium Dioxide Nanotubes. Chem. Phys. Lett. 365, 427 (2002).CrossRefGoogle Scholar
8Yao, B.D., Chan, Y.F., Zhang, X.Y., Zhang, W.F., Yang, Z.Y. and Wang, N.: Formation Mechanism of TiO2 Nanotubes. Appl. Phys. Lett. 82, 281 (2003).CrossRefGoogle Scholar
9Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y. and Peng, L.M.: Preparation and Structure Analysis of Titanium Oxide Nanotubes. Appl. Phys. Lett. 79, 3702 (2001).CrossRefGoogle Scholar
10Chen, Q., Du, G.H., Zhang, S. and Peng, L.M.: The Structure of Trititanate Nanotubes. Acta Crystallogr. B. 58, 587 (2002).CrossRefGoogle ScholarPubMed
11Chen, Q., Zhou, W.Z., Du, G.H. and Peng, L.M.: Trititanate Nanotubes Made via a Single Alkali Treatment. Adv. Mater. 14, 1208 (2002).3.0.CO;2-0>CrossRefGoogle Scholar
12Zhang, S., Peng, L.M., Chen, Q., Du, G.H., Dawson, G. and Zhou, W.Z.: Formation Mechanism of H2Ti3O7 Nanotubes. Phys. Rev. Lett. 91, 256103 (2003).CrossRefGoogle ScholarPubMed
13Sun, X. and Li, Y.: Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes. Chem. Eur. J. 9, 2229 (2003).CrossRefGoogle ScholarPubMed
14Ma, R.Z., Bando, Y. and Sasaki, T.: Nanotubes of Lepidocrocite Titanates. Chem. Phys. Lett. 380, 577 (2003).CrossRefGoogle Scholar
15Feist, T.P. and Davies, P.K.: The Soft Chemical Synthesis of TiO2 (B) from Layered Titanates. J. Solid State Chem. 101, 275 (1992).CrossRefGoogle Scholar
16 ICDD-JCPDS Powder diffraction file, Hydrogen Titanium Oxide, H2Ti3O7, The International Center for Diffraction Data, Newtown Square, PA, 47-0561, 1997Google Scholar
17Marchand, R., Brohan, L. and Tournoux, M.: TiO2 (B) A New Form of Titanium Dioxide and the Potassium Octatitanate K2Ti8O17. Mater. Res. Bull. 15, 1129 (1980).CrossRefGoogle Scholar
18Brohan, L., Verbaere, A. and Tournoux, M.: La Transformation TiO2 (B) → Anatase. Mater. Res. Bull. 17, 355 (1982).CrossRefGoogle Scholar
19 ICDD-JCPDS Powder diffraction file, Unnamed Mineral, TiO2, The International Center for Diffraction Data, Newtown Square, PA, 35-0088, 1985Google Scholar
20Banfield, J.F., Veblen, D.R. and Smith, D.J.: The Identification of Naturally Occurring TiO2 (B) by Structure Determination Using High-Resolution Electron Microscopy, Image Simulation, and Distance-Least-Squares Refinement. Am. Mineral. 76, 343 (1991).Google Scholar
21Watanabe, W., Bando, Y. and Tsutsumi, M.: A New Member of Sodium Titanates, Na2Ti9O19. J. Solid State Chem. 28, 397 (1979).CrossRefGoogle Scholar
22Watanabe, W.: The Investigation of Sodium Titanates by the Hydrothermal Reactions of TiO2 with NaOH. J. Solid State Chem. 36, 91 (1981).CrossRefGoogle Scholar
23Suzuki, Y., Morgan, P.E.D., Sekino, T. and Niihara, K.: Manufacturing Nano-Diphasic Materials from Natural Dolomite In Situ Observation on Nano-Phase Formation Behavior. J. Am. Ceram. Soc. 80, 2949 (1997).Google Scholar
24Suzuki, Y., Sekino, T., Hamasaki, T., Ishizaki, K. and Niihara, K.: In Situ Observation of Discrete Glassy SiO2 Formation and Quantitative Evaluation of Glassy SiO2 in MoSi2 Compacts. Mater. Lett. 37, 143 (1998).Google Scholar