Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T20:52:56.710Z Has data issue: false hasContentIssue false

Synthesis and characterization of single-bond fullerene dimer derivatives

Published online by Cambridge University Press:  10 September 2020

Hong-Quan Zhao*
Affiliation:
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
Shihan Yang
Affiliation:
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing401331, China
Tong-Le Xu
Affiliation:
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
Xuan Shi
Affiliation:
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing401331, China
Shirong Lu*
Affiliation:
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
Jian-Wei Wu*
Affiliation:
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing401331, China
Chunxiang Wang
Affiliation:
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing401331, China
Jian-Ming Hu
Affiliation:
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing401331, China
*
a)Address all correspondence to these authors. e-mail: hqzhao@cigit.ac.cn
Get access

Abstract

Fullerene dimers have attracted extensive attention due to their unique structures and fascinating properties. Here, fullerene dimer derivatives with four to six carbon atoms in the esters are designed and synthesized. The property differences that caused by the carbon number in the esters of the fullerene dimers are investigated by performing their electrochemical, optical, and photoelectric measurements. As the carbon atom numbers in the esters increase from four to five and six, the absorption intensities increase to 1.6- and 4.4-folds. The intensities of the fluorescence spectra increase to 1.8- and 5.2-folds. Their photocurrent increases to 2- and 7-folds under the irradiation of a 405-nm laser. The LUMO energy levels move downward slightly from −3.89 to −3.90 and −3.92 eV, respectively. Our results indicate that as the carbon number increases, the carbon chain lengths in the ester structures increase, very slight effects produced on the energy levels of the fullerene dimers, but strongly contribute to their chemical activities and thus the photoelectronic efficiencies.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

d)

These authors contributed equally to this paper.

References

Katz, E.A., Lyubinb, V., Faiman, D., Shtutina, S., Shames, A., and Gorerib, S.: Persistent photoelectric phenomena in oxygenated C60 thin films. Solid State Commun. 100, 781 (1996).CrossRefGoogle Scholar
Makarova, T.L.: Electrical and optical properties of pristine and polymerized fullerenes. Semiconductors 35, 243 (2001).CrossRefGoogle Scholar
Segura, J.L. and Martin, N.: [60]Fullerene dimers. Chem. Soc. Rev. 29, 13 (2000).CrossRefGoogle Scholar
Luo, H., Araki, Y., Fujitsuka, M., Ito, O., Cheng, F., Murata, Y., and Komatsu, K.: Dissociative electron attachment of singly bonded [60]Fullerene dimer studied by laser flash photolysis. J. Phys. Chem. B 108, 11915 (2004).CrossRefGoogle Scholar
Chang, W.W. and Zhao, Z.D.: Structure and electrochemical property of fullerene dimers. J. Org. Chem. 036, 2651 (2016) (in Chinese).Google Scholar
Sánchez, L., Sierra, M., Martín, N., Guldi, D.M., Wienk, M.W., and Janssen, R.A.J.: C(60)-exTTF-C(60) Dumbbells: Cooperative effects stemming from two C(60)s on the radical ion pair stabilization. Org. Lett. 7, 1691 (2005).CrossRefGoogle ScholarPubMed
Morinaka, Y., Nobori, M., Murata, M., Wakamiya, A., Sagawa, T., Yoshikawa, S., and Murata, Y.: Synthesis and photovoltaic properties of acceptor materials based on the dimerization of fullerene C60 for use in efficient polymer solar cells. Chem. Commun. 49, 3670 (2013).CrossRefGoogle ScholarPubMed
Wang, T.T. and Zeng, H.P.: Advance in research of metallofullerene complexes. Chin. J. Org. Chem. 28, 1303 (2008) (in Chinese).Google Scholar
Giacalone, F. and Martín, N.: Fullerene polymers: Synthesis and properties. Chem. Rev. 106, 5136 (2006).CrossRefGoogle ScholarPubMed
Giacalone, F. and Martín, N.: New concepts and applications in the macromolecular chemistry of fullerenes. Adv. Mater. 22, 4220 (2010).CrossRefGoogle ScholarPubMed
Itami, K.: The use of hydrophilic groups in aqueous organic reactions. Chem. Rec. 2, 223 (2010).Google Scholar
Nambo, M., Wakamiya, A., Yamaguchi, S., and Itami, K.: Regioselective unsymmetrical tetraallylation of C60 through palladium catalysis. J. Am. Chem. Soc. 131, 15112 (2009).CrossRefGoogle ScholarPubMed
Lu, S., Jin, T., Kwon, E., Bao, M., and Yamamoto, Y.: Highly efficient Cu(OAc)2-catalyzed dimerization of monofunctionalized hydrofullerenes leading to single-bonded [60] fullerene dimers. Angew. Chem. Int. Ed. 51, 802 (2012).CrossRefGoogle ScholarPubMed
Lu, S., Jin, T., Bao, M., and Yamamoto, Y.: NaOH-catalyzed dimerization of monofunctionalized hydrofullerenes: Transition-metal-free, general, and efficient synthesis of single-bonded [60] fullerene dimers. Org. Lett. 14, 3466 (2012).CrossRefGoogle ScholarPubMed
Wang, G.W., Wang, C.Z., Zhu, S.E., and Murata, Y.: Manganese(III) acetate-mediated radical reaction of [60] fullerene with phosphonate esters affording unprecedented separable singly-bonded [60] fullerene dimers. Chem. Cummun. 47, 6111 (2011).CrossRefGoogle Scholar
Yang, W.W., Li, Z.J., and Gao, X.: Formation of singly bonded PhCH2C60-C60CH2Ph dimers from 1,2-(PhCH2)HC60 via electroreductive C60-H activation. J. Org. Chem. 76, 6067 (2011).CrossRefGoogle ScholarPubMed
Tsyboulski, D., Heymann, D., Bachilo, S.M., Alemany, L.B., and Weisman, R.B.: Reversible dimerization of [5,6]-C60O. J. Am. Chem. Soc. 126, 7350 (2004).CrossRefGoogle Scholar
Dragoe, N., Shimotani, H., Hayashi, M., Saigo, K., Bettencourt-Dias, A., Balch, A.L., Miyake, Y., Achiba, Y., and Kitazawa, K.J.: Electronic interactions in a new fullerene dimer: C122H4, with two methylene bridges. J. Org. Chem. 65, 3269 (2000).CrossRefGoogle Scholar
Murata, Y., Kato, N., and Komatsu, K.: The reaction of fullerene C[sub 60] with phthalazine: The mechanochemical solid-state reaction. J. Org. Chem. 66, 7235 (2001).CrossRefGoogle ScholarPubMed
Fujiwara, K. and Komatsu, K.: Mechanochemical synthesis of a novel C60 dimer connected by a silicon bridge and a single bond. Org. Lett. 33, 104 (2010).Google Scholar
Murata, Y., Han, A., and Komatsu, K.: Mechanochemical synthesis of a novel C60 dimer connected by a germanium bridge and a single bond. J. Tetrahedron Lett. 44, 8199 (2003).CrossRefGoogle Scholar
Gromov, A., Lebedkin, S., Ballenweg, S., Avent, A.G., Taylor, R., and Kratschmer, W.: C120O2: The first [60]fullerene dimer withcages bis-linked by furanoid bridges. Chem. Commun. 2, 209 (1997).CrossRefGoogle Scholar
Wang, G.W., Komatsu, K., Murata, Y., and Shiro, M.: Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 387, 583 (1997).CrossRefGoogle Scholar
Pusztai, T., Faigel, G., Gránásy, L., Tegze, M., and Pekker, S.: Phase transitions in the A1C60 (A = K, Rb Cs) salts. Europhys. Lett. 32, 721 (1995).CrossRefGoogle Scholar
Dragoe, N., Shimotani, H., Wang, J., Iwaya, M., Bettencourt- Dias, A., Balch, A.L., and Kitazawa, K.: First unsymmetrical bisfullerene, C121: Evidence for the presence of both homofullerene and methanofullerene cages in one molecule. J. Am. Chem. Soc. 123, 1294 (2001).CrossRefGoogle Scholar
Ren, T., Sun, B., Chen, Z., Qu, L., Yuan, H., Gao, X., Wang, S., He, R., Zhao, F., Zhao, Y., Liu, Z., and Jing, X.: Photochemical and photophysical properties of three carbon-bridged fullerene dimers: C121 (I, II, III). J. Phys. Chem. B 111, 6344 (2007).CrossRefGoogle Scholar
Zhao, Y., Chen, Z., Yuan, H., Gao, X., Qu, L., Chai, Z., Xing, G., Yoshimoto, S., Tsutsumi, E., and Itaya, K.: Highly selective and simple synthesis of C2m-X-C2n fullerene dimers. J. Am. Chem. Soc. 126, 11134 (2004).CrossRefGoogle ScholarPubMed
Paquette, L.A. and Graham, R.J.: Graham, controlled spacing of 60-carbon spheres with 1,4-cyclohexadienyl ladders by pairwise Diels-Alder cycloaddition to Buckminsterfullerene. J. Org. Chem. 60, 2958 (1995).CrossRefGoogle Scholar
Zhang, J., Porfyrakis, K., Morton, J.J., Sambrook, M.R., Harmer, J., Xiao, L., Ardavan, A., and Briggs, G.A.D.: Photoisomerization of a fullerene dimer. J. Phys. Chem. C 112, 2802 (2008).CrossRefGoogle Scholar
Wang, G.W., Chen, Z.X., Murata, Y., and Komatsu, K.: [60] Fullerene adducts with 9-substituted anthracenes: Mechanochemical preparation and retro Diels-Alder reaction. Tetrahedron 61, 4851 (2005).CrossRefGoogle Scholar
Briggs, J.B., Montgomery, M., Silva, L.L., and Miller, G.P.: Facile, scalable regioselective synthesis of C3vC60H18 using organic polyamines. ChemInform 9, 916 (2006).Google Scholar
Delgado, J.L., Osuna, S., Bouit, P.A., Martínez-Alvarez, R., Espíldora, E., Solà, M., and Martín, N.: Competitive retro-cycloaddition reaction in fullerene dimers connected through pyrrolidinopyrazolino rings. J. Org. Chem. 74, 8174 (2009).CrossRefGoogle ScholarPubMed
Luo, H., Araki, Y., Fujitsuka, M., Ito, O., Cheng, F., Murata, Y., and Komatsu, K.: Dissociative electron attachment of singly bonded [60]Fullerene dimer studied by laser flash photolysis. J. Phys. Chem. B 108, 11915 (2004).CrossRefGoogle Scholar
Zheng, L., Zhou, Q., Deng, X., Yuan, M., Yu, G., and Cao, Y.: Methanofullerenes used as electron acceptors in polymer photovoltaic devices. J. Phys. Chem. B 108, 11921 (2004).CrossRefGoogle Scholar
Wang, H., He, Y., Li, Y., and Su, H.: Photophysical and electronic properties of five PCBM-like C60 derivatives: Spectral and quantum chemical view. J. Phys. Chem. A 116, 255262 (2012).CrossRefGoogle ScholarPubMed
Zhao, G., He, Y., Xu, Z., Hou, J., Zhang, M., Min, J., Chen, H.Y., Ye, M., Hong, Z., Yang, Y., and Li, Y.: Effect of carbon chain length in the substituent of PCBM-like molecules on their photovoltaic properties. Adv. Funct. Mater. 20, 1480 (2010).CrossRefGoogle Scholar
Dong, X., Yang, K., Tang, H., Hu, D., Chen, S., Zhang, J., Kan, Z., Duan, T., Hu, C., Dai, X., Xiao, Z., Sun, K., and Lu, S.: Improving molecular planarity by changing alky chain position enables 12.3% efficiency all small molecule organic solar cell with enhanced carrier lifetime and reduced recombination. Solar RRL 4, 1900326 (2020).CrossRefGoogle Scholar
Capozzi, V., Casamassima, G., Lorusso, G.F., Minafra, A., Piccolo, R., Trovato, T., and Valentini, A.: Optical characterization of fullerite C60 thin films. Synth. Met. 77, 3 (1996).CrossRefGoogle Scholar
Capozzi, V., Celentano, G., Perna, G., Lorusso, G.F., and Minafra, A.: Photoluminescence properties of C60 films deposited on silicon substrate. J. Lumin. 86, 129 (2000).CrossRefGoogle Scholar
Matus, M., Kuzmany, H., and Sohmen, E.: Self-trapped polaron exciton in neutral fullerene C60. Phys. Rev. Lett. 68, 2822 (1992).CrossRefGoogle ScholarPubMed
Yin, H., Zhang, H., and Yue, L.: Research on the scale-free fault tolerant topology model in wireless sensor network for comprehensive fault. Acta Phys. Sin. 63, 333 (2014).Google Scholar
Su, Y., Wang, Y., and Wang, G.: Palladium-catalyzed heteroannulation of [60] fullerene with N-(2-arylethyl) sulfonamides via C-H bond activation. Org. Chem. Front. 1, 689 (2014).CrossRefGoogle Scholar
Su, Y., Wang, Y., and Wang, G.: Palladium-catalysed heteroannulation of [60]fullerene with N-benzyl sulfonamides and subsequent functionalization. Chem. Commun. 48, 8132 (2012).CrossRefGoogle Scholar
Lu, S., Jin, T., Bao, M., and Yamamoto, Y.: Cobalt-catalyzed hydroalkylation of [60] fullerene with active alkyl bromides: Selective synthesis of monoalkylated fullerenes. J. Am. Chem. Soc. 133, 12842 (2011).CrossRefGoogle Scholar
Negri, F., Orlandi, G., and Zerbetto, F.: Quantum-chemical investigation of Franck-Condon and Jahn-Teller activity in the electronic spectra of Buckminsterfullerene. Chem. Phys. Lett. 144, 31 (1988).CrossRefGoogle Scholar
Bethune, D.S., Meijer, G., Tang, W.C., Rosen, H.J., Golden, W.G., and Seki, H.: Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters. Chem. Phys. Lett. 179, 181 (1991).CrossRefGoogle Scholar
Chai, X., Zhang, J., Hu, H., Yu, S., Sun, Q., Dan, Z., Jiang, Y., and Wu, Q.: Design, synthesis, and biological evaluation of novel triazole derivatives as inhibitors of cytochrome P450 14α-demethylase. Eur. J. Med. Chem. 44, 1913 (2009).CrossRefGoogle ScholarPubMed
Lu, S., Jin, T., Bao, M., and Yamamoto, Y.: Cobalt-catalyzed hydroalkylation of [60]fullerene with active alkyl bromides: Selective synthesis of monoalkylated fullerenes. J. Am. Chem. Soc. 133, 12842 (2011).CrossRefGoogle Scholar
Supplementary material: PDF

Zhao et al. supplementary material

Zhao et al. supplementary material 1

Download Zhao et al. supplementary material(PDF)
PDF 153.1 KB
Supplementary material: File

Zhao et al. supplementary material

Zhao et al. supplementary material 2

Download Zhao et al. supplementary material(File)
File 19.1 KB