Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T08:51:22.921Z Has data issue: false hasContentIssue false

Synthesis and characterization of montmorillonite clays with modulable porosity induced with acids and superacids

Published online by Cambridge University Press:  03 March 2011

Y. Marina Vargas Rodríguez
Affiliation:
Departmento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Campo 1, C.P. 54740, Estado de México, México
Hiram I. Beltrán
Affiliation:
Departamento de Ciencias Naturales, C. N. I., Universidad Autónoma Metropolitana-Cuajimalpa, Col. San Miguel Chapultepec, 11850, México, D.F.
Eloy Vázquez-Labastida
Affiliation:
Departamento de Ingeniería Química Industrial, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México, D.F., México
Carlos Linares-López
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria Coyoacán 04510, México, D.F., México
Manuel Salmón*
Affiliation:
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria Coyoacán 04510, México, D.F., México
*
a) Address all correspondence to this author. e-mail: msuniversidad@gmail.com, salmon@servidor.unam.mx
Get access

Abstract

The structural transformation of natural montmorillonite clay with different acids and superacids (hydrochloric, HCl; sulfuric, H2SO4; hydrofluoric, HF; perchloric, HClO4; chlorosulfonic, HSO3Cl; and trifluoromethanesulfonic, HSO3CF3 acids) is evaluated by various techniques, allowing its full characterization. The process involves the modulated digestion of the aluminum and silicon atoms from the original clay without the loss of the original mass in the material from a careful drying methodology. The x-ray diffraction technique suggests that the process is disruptive, causing different magnitudes of modification, depending on the acidic source, taking the material with natural lamellar structure as reference. By 27Al and 29Si magnetic resonance, it is also shown that all the silicon and aluminum atoms were removed from the chemical structure to be physisorbed or dispersed in the interstices of the clay lattice when HF, HSO3Cl, and H2SO4 acid treatments were carried out. However, with treatment of HClO4, the results suggest that only was achieved partial digestion and physisorption of the aluminosilicate core. Treatment with HCl led to a mild digestion that increased the laminar distance of the montmorillonite. Finally, HSO3CF3 acid achieved a total disorder of the lamellar structure of the clay. In addition, by infrared spectrometry, the disappearance of the absorption peaks assigned to Al2OH, AlMgOH, and Al-O-Si are other evidence of the complete digestion of silicon and aluminum atoms caused by the acidic medium. On the other hand, the Brunauer–Emmett–Teller (BET) surface areas of the acidified clays showed a great enlargement in comparison with the unmodified clay. The porosimetry measurements demonstrate the presence of mesopores and hysteresis as observed in the physisorption isotherms, which indeed exhibited a capillary condensation into the porous structures. The present results are the first full characterization research and structural comparison between the acidic and the not-extensively-studied superacidic modified clays of this type.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brindley, G.W. and Brown, G.: Crystal Structures of Clay Minerals and Their X-Ray Identification (London Mineralogical Society, London, UK, 1980).CrossRefGoogle Scholar
2Smith, D.E., Wang, Y., Chaturvedi, A., and Whitley, H.D.: Molecular simulations of the pressure, temperature, and chemical potential dependencies of clay swelling. J. Phys. Chem. B 110, 20046 (2006).Google Scholar
3Liu, X.D. and Lu, X.C.: A thermodynamic understanding of clay-swelling inhibition by potassium ions. Angew. Chem. Int. Ed. Engl. 45, 6300 (2006).Google Scholar
4Karaborni, S., Smit, B., Heidug, W., Urai, J., and van Oort, E.: The swelling of clays: Molecular simulations of the hydration of montmorillonite. Science 271, 1102 (1996).Google Scholar
5Olsewska, D.: Ammonia and water sorption properties of the mineral-layered nanomaterials used as the catalysts for NOx removal from exhaust gases. Catal. Today 114, 326 (2006).CrossRefGoogle Scholar
6Issaadi, R., Garin, F., and Chitour, C.E.: Palladium-sulfated zirconium pillared montmorillonite: Catalytic evaluation in light naphtha hydroisomerization reaction. Catal. Today 113, 174 (2006).CrossRefGoogle Scholar
7Corma, A.: From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373 (1997).Google Scholar
8Galarneau, A., Barodawalla, A., and Pinnavaia, T.J.: Porous clay heterostructures formed by gallery-templated synthesis. Nature 374, 529 (1995).CrossRefGoogle Scholar
9Clearfield, A.: Role of ion-exchange in solid-state chemistry. Chem. Rev. 88, 125 (1988).CrossRefGoogle Scholar
10Akelah, A., Rehab, A., Kenawy, E.R., and Zeid, M.S. Abou: Catalytic activity of polymer-montmorillonite composites in chemical reactions. J. Appl. Polym. Sci. 101, 1121 (2006).Google Scholar
11Balazs, A.C., Singh, C., Zhulina, E., and Lyatskaya, Y.: Modeling the phase behavior of polymer/clay nanocomposites. Accounts Chem. Res. 32, 651 (1999).CrossRefGoogle Scholar
12Ferris, J.P. and Ertem, G.: Oligomerization of ribonucleotides on montmorillonite: Reaction of the 5′-phosphorimidazolide of adenosine. Science 257, 1387 (1992).Google Scholar
13Kannan, R.Y., Salacinski, H.J., Butler, P.E., and Seifalian, A.M.: Polyhedral oligomeric silsesquioxane nanocomposites: The next generation material for biomedical applications. Acc. Chem. Res. 38, 879 (2005).Google Scholar
14Chitnis, S.R. and Sharma, M.M.: Industrial applications of acid-treated clays as catalysts. React. Funct. Polym. 32, 93 (1997).Google Scholar
15Mikhail, S., Zaki, T., and Khalil, L.: Desulfurization by an economically adsorption technique. Appl. Catal. A-Gen. 227, 265 (2002).Google Scholar
16Choudary, B.M., Kantam, M.L., and Santhi, P.L.: New and ecofriendly options for the production of specialty and fine chemicals. Catal. Today 57, 17 (2000).CrossRefGoogle Scholar
17Tyagi, B., Chudasama, C.D., and Jasra, R.V.: Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectroc. Acta A-Mol. Biomol. Spectr. 64, 273 (2006).CrossRefGoogle ScholarPubMed
18Madejova, J., Bujdak, J., Janek, M., and Komadel, P.: Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectroc. Acta A-Mol. Biomol. Spectr. 54, 1397 (1998).Google Scholar
19Jozefaciuk, G. and Bowanko, G.: Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals. Clays Clay Miner. 50, 771 (2002).Google Scholar
20Shinoda, T., Onaka, M., and Izumi, Y.: Proposed models of mesopore structures in sulfuric acid-treated montmorillonites and K10. Chem. Lett. (Jpn.) 24, 495 (1995).Google Scholar
21Shinoda, T., Onaka, M., and Izumi, Y.: The reason why K10 is an effective promoter for meso-tetraalkylporphyrin synthesis. Chem. Lett. (Jpn.) 24, 493 (1995).Google Scholar
22Ravichandran, J. and Sivasankar, B.: Properties and catalytic activity of acid-modified montmorillonite and vermiculite. Clays Clay Miner. 45, 854 (1997).Google Scholar
23Breen, C., Madejova, J., and Komadel, P.: Correlation of catalytic activity with infrared, Si-29 Mas Nmr and acidity data for Hcl-treated fine fractions of montmorillonites. Appl. Clay Sci. 10, 219 (1995).CrossRefGoogle Scholar
24Tkac, I., Komadel, P., and Muller, D.: Acid-treated montmorillonites: A study by Si-29 and Al-27 MAS NMR. Clay Miner. 29, 11 (1994).CrossRefGoogle Scholar
25Breen, C., Madejova, J., and Komadel, P.: Characterization of moderately acid-treated, size-fractionated montmorillonites using Ir and MAS NMR-spectroscopy and thermal-a analysis. J. Mater. Chem. 5, 469 (1995).Google Scholar
26Arriola, H., Salmon, M., Vargas, M., Soberon, J., Nava, N., and Ruiz, O.L.: Characterization of a few Mexican clays. J. Radioanal. Nucl. Chem. 250, 165 (2001).Google Scholar
27Meyers, C.J., Shah, S.D., Patel, S.C., Sneeringer, R.M., Bessel, C.A., Dollahon, N.R., Leising, R.A., and Takeuchi, E.S.: Templated synthesis of carbon materials from zeolites (Y, β, and ZSM-5) and a montmorillonite clay (K10): Physical and electrochemical characterization. J. Phys. Chem. B 105, 2143 (2001).CrossRefGoogle Scholar
28Miranda-Ruvalcaba, R., Razo, G.A. Arroyo, Carrillo, G.P., Reyes, F.D., Ortiz, A.C., Toledano, C.A., and Salazar, M.S.: Preparative heterocyclic chemistry using tonsil a bentonitic clay: 1981 to 2003. Trends Heterocycl. Chem. 9, 195 (2003).Google Scholar
29Salmon, M., Angeles, E., and Miranda, R.: Bromine–bentonite earth system, promoter of phenylmethanes from toluene. J. Chem. Soc. Chem. Commun. 1188 (1990).CrossRefGoogle Scholar
30Miranda, R., Osnaya, R., Garduno, R., Delgado, F., Alvarez, C., and Salmon, M.: A general alternative to obtain S.S-acetals using TAFF, a bentonitic clay, as the catalyst. Synth. Commun. 31, 1587 (2001).Google Scholar
31Cruz-Almanza, R., Shiba-Matzumoto, I., Fuentes, A., Martinez, M., Cabrera, A., Cardenas, J., and Salmon, M.: Oligomerization of benzylic alcohols and its mechanism. J. Mol. Catal. A-Chem. 126, 161 (1997).CrossRefGoogle Scholar
32Cabrera, A., Peon, J., Velasco, L., Miranda, R., Salmon, A., and Salmon, M.: Clay-mediated cyclooligomerization of olefin oxides: A one-pot route to crown-ethers. J. Mol. Catal. A-Chem. 104, L5 (1995).CrossRefGoogle Scholar
33Vargas, M., Vazquez-Labastida, E., Bautista, L., Cardenas, J., and Salmon, M.: Catalytic synthesis of 1,3,5-triphenylbenzenes, β-methylchalcones and 2,4,6-triphenyl pyrylium salts, promoted by a super acid trifluoromethene sulfonic clay from acetophenones. J. Mexican Chem. Soc. 50, 26 (2006).Google Scholar
34Salmon, M., Penieres, G., Miranda, R., and Alvarez, C.: The action of bentonitic earth on natural product epoxides. J. Heterocycl. Chem. 18, 1475 (1981).CrossRefGoogle Scholar
35Salmon, M., Miranda, R., and Angeles, E.: Oxidative cleavage of aldo and keto oximes with chromyl chloride adsorbed on silica and bentonite earth. Synth. Commun. 16, 1827 (1986).CrossRefGoogle Scholar
36Salmon, M., PerezLuna, M., LopezFranco, C., Hernandez, E., AlvarezRamirez, R.A., LopezOrtega, A., and Dominguez, J.M.: Catalytic conversion of propylene oxide on a super acid sulfonic clay (SASC) system. J. Mol. Catal. A-Chem. 122, 169 (1997).CrossRefGoogle Scholar
37Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T.: Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603 (1985).Google Scholar
38Occelli, M.L., Olivier, J.P., Perdigon-Melon, J.A., and Auroux, A.: Surface area, pore volume distribution, and acidity in mesoporous expanded clay catalysts from hybrid density-functional theory (DFT) and adsorption microcalorimetry methods. Langmuir 18, 9816 (2002).Google Scholar
39Leofanti, G., Padovan, M., Tozzola, G., and Venturelli, B.: Surface area and pore texture of catalysts. Catal. Today 41, 207 (1998).CrossRefGoogle Scholar
40Tombacz, E., Szekeres, M., Baranyi, L., and Micheli, E.: Surface modification of clay minerals by organic polyions. Colloid Surf. A-Physicochem. Eng. Asp. 141, 379 (1998).Google Scholar
41Landskron, K. and Ozin, G.A.: Periodic mesoporous dendrisilicas. Science 306, 1529 (2004).CrossRefGoogle ScholarPubMed
42Pai, R.A., Humayun, R., Schulberg, M.T., Sengupta, A., Sun, J.N., and Watkins, J.J.: Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 303, 507 (2004).CrossRefGoogle ScholarPubMed
43Rolison, D.R.: Catalytic nanoarchitectures: The importance of nothing and the unimportance of periodicity. Science 299, 1698 (2003).Google Scholar
44Tsai, W.T., Lai, C.W., and Hsien, K.J.: Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching. J. Colloid Interface Sci. 297, 749 (2006).CrossRefGoogle ScholarPubMed
45Chipera, S.J. and Bish, D.L.: Thermal evolution of fluorine from smectite and kaolinite. Clays Clay Miner. 50, 38 (2002).Google Scholar
46Chipera, S.J. and Bish, D.L.: Baseline studies of The Clay Minerals Society Source Clays: Powder x-ray diffraction analyses. Clays Clay Miner. 49, 398 (2001).Google Scholar
47Miranda, R., Escobar, A., Delgado, F., Salmon, M., and Cabrera, A.: Catalytic promotion of piperonyl alcohol to trimethylendioxyorthocyclophane by bentonitic earth, or by hydrochloric acid. J. Mol. Catal. A-Chem. 150, 299 (1999).CrossRefGoogle Scholar
48Madejova, J. and Komadel, P.: Baseline studies of The Clay Minerals Society Source Clays: Infrared methods. Clays Clay Miner. 49, 410 (2001).Google Scholar
49Crepaldi, E.L., Pavan, P.C., Tronto, J., and Valim, J.B.A.: Chemical, structural, and thermal properties of Zn(II)-Cr(III) layered double hydroxides intercalated with sulfated and sulfonated surfactants. J. Colloid Interface Sci. 248, 429 (2002).Google Scholar
50Weiss, C.A., Altaner, S.P., and Kirkpatrick, R.J.: High-resolution Si-29 NMR-spectroscopy of 2-1 layer silicates: Correlations among chemical-shift, structural distortions, and chemical variations. Am. Miner. 72, 935 (1987).Google Scholar
51Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G., and Grimmer, A.R.: Structural studies of silicates by solid-state high-resolution Si-29 NMR. J. Am. Chem. Soc. 102, 4889 (1980).Google Scholar
52Stebbins, J.F.: NMR evidence for 5-coordinated silicon in a silicate glass at atmospheric-pressure. Nature 351, 638 (1991).Google Scholar
53Stebbins, J.F.: Identification of multiple structural species in silicate-glasses by Si-29 NMR. Nature 330, 465 (1987).Google Scholar
54Mueller, D., Hoebbel, D., and Gessner, W.: Al-27 NMR-studies of aluminosilicate solutions: Influences of the 2nd coordination sphere on the shielding of aluminum. Chem. Phys. Lett. 84, 25 (1981).Google Scholar
55Ohkubo, T., Kanehashi, K., Saito, K., and Ikeda, Y.: Observation of two 4-coordinated Al sites in montmorillonite using high magnetic field strength Al-27 MQMAS NMR. Clays Clay Miner. 51, 513 (2003).CrossRefGoogle Scholar
56Barron, P.F., Slade, P., and Frost, R.L.: Ordering of aluminum in tetrahedral sites in mixed-layer 2-1 phyllosilicates by solid-state high-resolution NMR. J. Phys. Chem. 89, 3880 (1985).Google Scholar
57Barron, P.F., Slade, P., and Frost, R.L.: Solid-state Si-29 spin-lattice relaxation in several 2-1 phyllosilicate minerals. J. Phys. Chem. 89, 3305 (1985).Google Scholar
58Mortlock, R.F., Bell, A.T., and Radke, C.J.: P-31 and Al-27 NMR investigations of highly acidic, aqueous-solutions containing aluminum and phosphorus. J. Phys. Chem. 97, 767 (1993).CrossRefGoogle Scholar
59Kao, H.M. and Chen, Y.C.: Al-27 and F-19 solid-state NMR studies of zeolite H-β dealuminated with ammonium hexafluorosilicate. J. Phys. Chem. B 107, 3367 (2003).Google Scholar
60Smith, M.E.: Application of Al-27 NMR techniques to structure determination in solids. Appl. Magn. Reson. 4, 1 (1993).Google Scholar