Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T23:20:41.077Z Has data issue: false hasContentIssue false

Synthesis and characterization of barium bis(citrato) oxozirconate(IV) tetrahydrate: A new molecular precursor for fine particle BaZrO3

Published online by Cambridge University Press:  03 March 2011

M. Rajendran*
Affiliation:
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
Subba M. Rao
Affiliation:
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
*
a)Author to whom correspondence should be addressed. Presently at Materials Science Research Centre, Indian Institute of Technology, Madras 600 036, India.
Get access

Abstract

Barium metazirconate (BaZrO3) fine powder has been produced by thermally decomposing a molecular precursor, barium bis(citrato)oxozirconate(IV) tetrahydrate at about 700 °C. The precursor, Ba[ZrO(C6H6O7)2] · 4H2O (BZO) has been synthesized and characterized by employing a combination of spectroscopic and thermoanalytical techniques. The precursor undergoes thermal decomposition in three major stages: (i) dehydration to give an anhydrous barium zirconyl citrate, (ii) decomposition of the anhydrous citrate in a multistep process to form an ionic oxycarbonate intermediate, Ba2Zr2O5CO3, and (iii) decomposition of the oxycarbonate to produce BaZrO3 fine powder. The particle size of the resultant BaZrO3 is about 0.2 μm, and the surface area is found to be 4.0 m2 g−1.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gallaso, F. S., Structure, Properties and Preparation of Perovskitetype Compounds (Pergamon, Oxford, 1969).Google Scholar
2Muller, O. and Roy, R., The Major Ternary Structure Families, Vol. 4 of the series, Crystal Chemistry of Non-Metallic Materials (Springer-Verlag, New York, 1974).CrossRefGoogle Scholar
3Lines, M. E. and Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).Google Scholar
4Smolenskii, G. A., Bovok, V. A., Isupov, V. A., Kranik, N. W., Pasyhkov, P. E., and Sokolov, A. I., Ferroelectrics and Related Materials (Gordon and Breach, New York, 1984).Google Scholar
5Norton, F. H., Fine Ceramics (McGraw-Hill, New York, 1970), p. 433.Google Scholar
6Mclntyre, P. C., Cima, M. J., Ng, M. F., Chiu, R. C., and Rhine, W. E., J. Mater. Res. 5, 2771 (1990).CrossRefGoogle Scholar
7Cordfunke, E. H. P. and Konings, R. J. M., J. Nucl. Mater. 152, 301 (1988).CrossRefGoogle Scholar
8Phulé, P.P. and Risbud, S.H., J. Mater. Sci. 25, 1169 (1990).CrossRefGoogle Scholar
9Thampi, K. R., Subba Rao, M., Schwarz, W., Grätzel, M., and Kiwi, J., J. Chem. Soc. Faraday Trans. 84, 1703 (1988).CrossRefGoogle Scholar
10Longo, J. M., Preparation and Characterization of Materials, edited by Honig, J. M. and Rao, C. N. R. (Academic Press, New York, 1981), p. 29.CrossRefGoogle Scholar
11Ravindranathan, P., Mahesh, G. V., and Patil, K. C., J. Solid State Chem. 66, 20 (1987).CrossRefGoogle Scholar
12Segal, D., Chemical Synthesis of Advanced Ceramic Materials, in Chemistry of Solid State Materials (Cambridge University Press, Cambridge, 1989).CrossRefGoogle Scholar
13Sheppard, L. M., Am. Ceram. Soc. Bull. 68, 979 (1989).Google Scholar
14Johnson, D. W. Jr., Am. Ceram. Soc. Bull. 60, 221 (1981).Google Scholar
15Lessing, P. A., Am. Ceram. Soc. Bull. 68, 1002 (1989).Google Scholar
16Rajendran, M. and Subba Rao, M., Bull. Mater. Sci. 14, 367 (1991).CrossRefGoogle Scholar
17Rajendran, M. and Subba Rao, M., J. Solid State Chem. (1994, in press).Google Scholar
18Gopalakrishnamurthy, H. S., Subba Rao, M., and Kutty, T. R. N., J. Inorg. Nucl. Chem. 37, 891 (1975).CrossRefGoogle Scholar
19Gangadevi, T., Subba Rao, M., and Kutty, T. R. N., J. Thermal Anal. 19, 321 (1980).CrossRefGoogle Scholar
20Sheinkman, A. P., Yunusova, N. V., Osachere, V. P., and Kondrashenkov, A. A., Russ. J. Inorg. Chem. 19, 206 (1974).Google Scholar
21Kolthoff, I. M. and Belcher, R., Volumetric Analysis, 3rd ed. (Interscience, New York, 1957), p. 159.Google Scholar
22Vogel, A. I., Quantitative Inorganic Analysis, 3rd ed. (Longmans Green, London, 1961), p. 256.Google Scholar
23Brunauers, S., Emmett, P. H., and Teller, E., J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
24Strouse, J., Layten, S. W., and Strouse, C. E., J. Am. Chem. Soc. 99, 562 (1977).CrossRefGoogle Scholar
25Johnson, C. K., Acta Crystallogr. 18, 1004 (1965).CrossRefGoogle Scholar
26Carrell, H. L. and Glusker, J. P., Acta Crystallogr. B 29, 638 (1973).CrossRefGoogle Scholar
27Feng, T. L., Gurian, P. L., Healy, M. D., and Barron, A. R., Inorg. Chem. 29, 408 (1990).CrossRefGoogle Scholar
28Alcock, N. W., Dudek, M., Grybos, R., Hodorowick, E., Kanas, A., and Samotus, A. J., J. Chem. Soc, Dalton Trans., 707 (1990).CrossRefGoogle Scholar
29Sheldrick, B., Acta Crystallogr. B 30, 2056 (1974).CrossRefGoogle Scholar
30Swanson, R., Ilsley, W. H., and Stanislowski, A. G., J. Inorg. Biochem. 18, 187 (1983).CrossRefGoogle Scholar
31Deacon, G. B. and Philips, R. J., Coord. Chem. Rev. 33, 227 (1980).CrossRefGoogle Scholar
32Clearfield, A. and Vaughan, P. A., Acta Crystallogr. 9, 555 (1956).CrossRefGoogle Scholar
33Asato, E., Katsura, K., Mikuriya, M., Fuji, T., and Reedijk, J., Inorg. Chem. 32, 5322 (1993).CrossRefGoogle Scholar