Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T10:49:32.707Z Has data issue: false hasContentIssue false

Surface-effect territory in small volume creep deformation

Published online by Cambridge University Press:  31 January 2011

Fei Wang*
Affiliation:
MOE Key Laboratory for Strength and Vibration, School of Aerospace, Xian Jiaotong University, Xi’an 710049, People's Republic of China
Ping Huang*
Affiliation:
State-Key Laboratory for Mechanical Behavior of Material, Xi’an Jiaotong University, Xi’an 710049, People's Republic of China
Tianjian Lu
Affiliation:
MOE Key Laboratory for Strength and Vibration, School of Aerospace, Xian Jiaotong University, Xi’an 710049, People's Republic of China
*
Address all correspondence to these authors.
Get access

Abstract

It is yet unclear how far surface effects can dominate small volume creep deformation in the surface layer of a metallic solid. We report experimental results of the apparent activation volume of single, ultrafine-grained, and nanocrystalline Cu over a range of nanoscale displacements. The dependence of the apparent activation volume on the depth and grain size was determined using nanoindentation creep tests. The surface-affected deformation regimen, within which interfacial diffusion between the nanoindenter tip and the sample totally dominates the creep behavior, was quantitatively determined to be below ∼12 nm. As the initial creep depth is increased, the dominant mechanism is shifted from interfacial diffusion to grain-boundary diffusion as the contribution of the surface effects gradually vanishes when the indenter penetrates deeper into the sample (i.e., further away from the external surface).

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kassner, M.E. and Perez-Prado, M.T.: Five-power-law creep in single phase metals and alloys. Prog. Mater. Sci. 45, 1 (2000).Google Scholar
2.Nabarro, F.R.N.: Creep in commercially pure metals. Acta Mater. 54, 263 (2006).CrossRefGoogle Scholar
3.Li, H. and Ngan, A.H.W.: Size effects of nanoindentation creep. J. Mater. Res. 19, 513 (2004).Google Scholar
4.Ma, Z.S., Long, S.G., Pan, Y., and Zhou, Y.C.: Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films. J. Mater. Sci. 43, 5952 (2008).CrossRefGoogle Scholar
5.Wang, F., Huang, P., and Xu, K.W.: Time dependent plasticity at real nanoscale deformation. Appl. Phys. Lett. 90, 161921 (2007).CrossRefGoogle Scholar
6.Elmustafa, A.A. and Stone, D.S.: Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 51, 357 (2003).CrossRefGoogle Scholar
7.Klassen, R.J., Diak, B.J., and Saimoto, S.: Origin of the depth dependence of the apparent activation volume in polycrystalline 99.999 Cu determined by displacement rate change microindentation. Mater. Sci. Eng., A 387389, 297 (2004).CrossRefGoogle Scholar
8.Bhakhri, V. and Klassen, R.J.: The depth dependence of the indentation creep of polycrystalline gold at 300 K. Scr. Mater. 55, 395 (2006).CrossRefGoogle Scholar
9.Elmustafa, A.A. and Stone, D.S.: Indentation size effect in polycrystalline FCC metals. Acta Mater. 50, 3641 (2002).CrossRefGoogle Scholar
10.Wang, Y.M., Hamza, A.V., and Ma, E.: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 (2006).Google Scholar
11.Wang, Y.M., Hamza, A.V., and Ma, E.: Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl. Phys. Lett. 86, 241917 (2005).Google Scholar
12.Schuh, C.A., Mason, J.K., and Lund, A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).CrossRefGoogle ScholarPubMed
13.Fujiwara, M. and Otsuka, M.: Indentation creep of [beta]-Sn and Sn-Pb eutectic alloy. Mater. Sci. Eng., A 319321, 929 (2001).Google Scholar
14.BN, Lucas and WC, Oliver: Indentation power-law creep of highpurity indium. Metall. Mater. Trans. A 30, 601 (1999).Google Scholar
15.Wang, F., Huang, P., and Xu, K.W.: Strain rate sensitivity of nanoindentation creep in polycrystalline Al film on silicon substrate. Surf. Coat. Technol. 5216, 201 (2007).Google Scholar
16.Chu, S.N.G. and Li, J.C.M.: Impression creepNew creep test. J. Mater. Sci. 12, 2200 (1977).Google Scholar
17.R, Mahmudi, R, Roumina, and B, Raeisinia: Investigation of stress exponent in the power-law creep of Pb-Sb alloys. Mater. Sci. Eng., A 382, 15 (2004).Google Scholar
18.Roumina, R., Raeisinia, B., and Mahmudi, R.: Room temperature indentation creep of cast Pb-Sb alloys. Scr. Mater. 51, 497 (2004).Google Scholar
19.Stone, D.S. and Yoder, K.B.: Division of the hardness of molybdenum into rate-dependent and rate-independent components. J. Mater. Res. 9, 2524 (1994).CrossRefGoogle Scholar
20.Yu, E.C. and Li, J.C.M.: Impression creep of Lif single-crystals. Philos. Mag. 36, 811 (1977).Google Scholar
21.Yu, H.Y. and Li, J.C.M.: Computer-simulation of impression creep by finite-element method. J. Mater. Sci. 12, 2214 (1977).CrossRefGoogle Scholar
22.Frost, H.J. and Ashby, M.F.: Deformation-Mechanism Maps: The Plasticity and Creep Metals and Ceramics (Pergamon Press, Oxford, UK, 1982).Google Scholar
23.Caillard, D.M. and Martin, J.L.: Thermally Activated Mechanisms in Crystal Plasticity (Pergamon Press, Amsterdam, The Netherlands, 2003).Google Scholar
24.Krausz, A.S. and Eyring, H.: Deformation Kinetics (John Wiley & Sons, New York, 1975).Google Scholar
25.Asaro, R.J. and Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 (2005).CrossRefGoogle Scholar
26.Trelewicz, J.R. and Schuh, C.A.: The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater. 55, 5948 (2007).CrossRefGoogle Scholar
27. A.C. Fischer-Cripps: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol. 200, 4153 (2006).Google Scholar
28.Vehoff, H., Marx, M., Welsch, M., Schaf, W., Yang, B., and Lemaire, D.: Interaction of cracks and dislocations with grain boundaries investigated by focus ion beam microscopy and nanoindentation technique. Materialprufung 50, 118 (2008).Google Scholar
29.Jiang, Z.H., Liu, X.L., Li, G.Y., Jiang, Q., and Lian, J.S.: Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Appl. Phys. Lett. 88, 143115 (2006).CrossRefGoogle Scholar
30.Saha, R. and Nix, W.D.: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2002).Google Scholar
31.Zhang, K., Weertman, J.R., and Eastman, J.A.: The influence of time, temperature, and grain size on indentation creep in highpurity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 (2004).CrossRefGoogle Scholar
32.XP, Nano Indenter: Users Manual (MTS Systems Corporation, Oak Ridge, TN, 2004).Google Scholar
33.Elmustafa, A.A. and Stone, D.S.: Size-dependent hardness in annealed and work hardened at-brass and aluminum polycrystalline materials using activation volume analysis. Mater. Lett. 57, 1072 (2003).CrossRefGoogle Scholar
34.Gerberich, W.W., Cordill, M.J., Mook, W.M., Moody, N.R., Perrey, C.R., Carter, C.B., Mukheriee, R., and Girshick, S.L.: A boundary constraint energy balance criterion for small volume deformation. Acta Mater. 53, 2215 (2005).CrossRefGoogle Scholar
35.Pugno, N.M.: A general shape/size-effect law for nanoindentation. Acta Mater. 55, 1947 (2007).Google Scholar
36.Gerberich, W.W., Mook, W.M., Chambers, M.D., Cordill, M.J., Perrey, C.R., Carter, C.B., Miller, R.E., Curtin, W.A., Mukherjee, R., and Girshick, S.L.: An energy balance criterion for nanoindentation-induced single and multiple dislocation events. J. Appl. Mech. 73, 327 (2006).Google Scholar
37.Herring, C.: Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437 (1950).Google Scholar
38.Coble, R.L.: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
39.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).Google Scholar
40.Smallman, R.E.: Modern Physical Metallurgy, 4th ed. (Butterworth, London, 1985).Google Scholar