Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T00:06:43.911Z Has data issue: false hasContentIssue false

Surface resistance measurement of superconducting YBa2Cu3O7 in a magnetic field

Published online by Cambridge University Press:  31 January 2011

C. C. Chin
Affiliation:
Center for Materials Science and Engineering and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
P. J. Rainville
Affiliation:
Rome Air Development Center (RADC), Hanscom AFB, Massachusetts 01731-5000
A. J. Drehman
Affiliation:
Rome Air Development Center (RADC), Hanscom AFB, Massachusetts 01731-5000
J. S. Derov
Affiliation:
Rome Air Development Center (RADC), Hanscom AFB, Massachusetts 01731-5000
J. Steinbeck
Affiliation:
Rome Air Development Center (RADC), Hanscom AFB, Massachusetts 01731-5000
G. Dresselhaus
Affiliation:
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on the magnetic-field dependent surface resistance of polycrystalline YBa2Cu3O7 (Tc ≃ 92 K), measured using a brass cylindrical cavity resonator, operating at 16.5 GHz in the TE011 mode. A de magnetic field Happ is applied parallel to the superconducting sample surface, and the temperature dependence of the surface resistance is measured for four different values of Happ (0 T, 0.22 T, 1 T, 5 T). An effective medium theory and the two-fluid model are used to fit the surface resistance versus temperature measurements both in zero field and for various applied fields. These results are applied to characterize the microwave properties of a polycrystalline ceramic superconductor.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

References

1Carr, G. L., Perkowitz, S., and Tanner, D. B., in Infrared and Millimeter Waves, edited by Button, K. J. (Academic Press, New York, 1985), Vol. 13, p. 171.Google Scholar
2lye, Y., Tamegai, T., Takeya, H., and Takei, H., Jpn. J. Appl. Phys. 26, L1057 (1987).Google Scholar
3Tinkham, M., Phys. Rev. Lett. 61, 1658 (1988).CrossRefGoogle Scholar
4Palstra, T. T. M., Batlogg, B., Schneemeyer, L. F., and Waszczak, J.V., Phys. Rev. Lett. 61, 1661 (1988).CrossRefGoogle Scholar
5Malozemoff, A. P., KrusinElbaum, L., Cronemeyer, D. C., Yeshurun, Y., and Holtzberg, F., Phys. Rev. B 38, 6490 (1988).CrossRefGoogle Scholar
6Anderson, P. W., Phys. Rev. Lett. 9, 309 (1962).CrossRefGoogle Scholar
7Bean, C. P., Rev. Mod. Phys. 36, 31 (1964).CrossRefGoogle Scholar
8Anderson, P. W. and Kim, Y. B., Rev. Mod. Phys. 36, 39 (1964).CrossRefGoogle Scholar
9Kim, Y. B., Hempstead, C. F., and Strand, A. R., Rev. Mod. Phys. 36, 43 (1964).CrossRefGoogle Scholar
10Yeshurun, Y. and Malozemoff, A. P., Phys. Rev. Lett. 60, 2202 (1988).CrossRefGoogle Scholar
11KrusinElbaum, L., Malozemoff, A. P., Yeshurun, Y., Cronemeyer, D. C., and Holtzberg, F., Phys. Rev. B 39, 2936 (1989).CrossRefGoogle Scholar
12Worthington, T. K., Gallagher, W. J., and Dinger, T. R., Phys. Rev. Lett. 59, 1160 (1987).CrossRefGoogle Scholar
13Malozemoff, A. P., Worthington, T. K., Yeshurun, Y., Holtzberg, F., and Kes, P. H., Phys. Rev. B 38, 7203 (1988).CrossRefGoogle Scholar
14Portis, A. M., Blazey, K. W., Miiller, K. A., and Bednorz, J. G., Europhysics Letters 5 467 (1988).CrossRefGoogle Scholar
15Wu, D. H., Shiftman, C. A., and Sridhar, S., Phys. Rev. B 38, 9311 (1988).CrossRefGoogle Scholar
16Wu, D. H., Kennedy, W., Zahopoulos, C., and Sridhar, S., Appl. Phys. Lett. 55, 696 (1989).CrossRefGoogle Scholar
17Sridhar, S., Wu, D. H., and Kennedy, W., Phys. Rev. Lett. 63, 1873 (1989).CrossRefGoogle Scholar
I8Pakulis, E. J. and Chandrashekhar, G. V., Phys. Rev. B 39, 808 (1989).CrossRefGoogle Scholar
19Sridhar, S. and Kennedy, W. L., Rev. Sci. Inst. 59, 531 (1988).CrossRefGoogle Scholar
20Fuller, W. W., Rachford, F. J., Lechter, W. L., Broussard, P. R., Allen, L. H., and Claussen, J. M, IEEE Trans. Mag. 25, 2394 (1989).CrossRefGoogle Scholar
21Carini, J. P., Awasthi, A. M., Beyermann, W., Griiner, G., Hylton, T., Char, K., Beasley, M. R., and Kapitulnik, A., Phys. Rev. B 37, 9726 (1988).CrossRefGoogle Scholar
22DiIorio, , Anderson, A. C., and Tsaur, B. Y., Phys. Rev. B 38, 7019 (1988).CrossRefGoogle Scholar
23Cooke, D. W., Gray, E. R., Houlton, R. J., Rusnak, B., Meyer, E. A., Beery, J. G., Brown, D. R., Garzon, F. H., Raistrick, I. D., Rollet, A. D., and Bolmaro, R., Appl. Phys. Lett. 55, 914 (1989).CrossRefGoogle Scholar
24Piel, H., Hein, M., Klein, N., Klein, U., Michalke, A., Miiller, G., and Ponto, L., Physica C 153–155, 1604 (1988).CrossRefGoogle Scholar
25Sucher, M. and Fox, J., Handbook of Microwave Measurements (Polytechnic Press, 1963), Vol. II, Chap. VIII.Google Scholar
26Carini, J. P., Drabeck, L., and Griiner, G., Modern Phys. Lett. B 3, 5 (1989).CrossRefGoogle Scholar
27Philipp, A. and Halbritter, J., IEEE Trans. MAG17, 951 (1981).Google Scholar
28Hylton, T., Kapitulnik, A., Beasley, M. R.,Carini, J. P, Drabeck, L., and Griiner, G., Appl. Phys. Lett. 53, 1343 (1988).CrossRefGoogle Scholar
29Halbritter, J. (1990), to be published.Google Scholar
30Bruggeman, A. G, Ann. Phys. (Leipzig) 24, 636 (1935).CrossRefGoogle Scholar
31Garner, J. and Stroud, D., Phys. Rev. B 28, 2447 (1983).CrossRefGoogle Scholar
32Doll, G. L., Nicholls, J. T., Dresselhaus, M. S., Rao, A. M., Zhang, J. M., Lehman, G. W., Eklund, P. C., Dresselhaus, G., and Strauss, A. J., Phys. Rev. B 38, 8850 (1988).CrossRefGoogle Scholar
33Rao, A. M., Eklund, P. C., Lehman, G. W., Face, D. W., Doll, G. L., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B (in press).Google Scholar