Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:52:14.517Z Has data issue: false hasContentIssue false

Surface irradiation and materials processing using polyatomic cluster ion beams

Published online by Cambridge University Press:  12 January 2012

Gikan H. Takaoka*
Affiliation:
Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Kyoto 615-8510, Japan
Hiromichi Ryuto
Affiliation:
Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Kyoto 615-8510, Japan
Mitsuaki Takeuchi
Affiliation:
Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Kyoto 615-8510, Japan
*
a)Address all correspondence to this author. e-mail: gtakaoka@kuee.kyoto-u.ac.jp
Get access

Abstract

We developed a polyatomic cluster ion beam system for materials processing, and polyatomic clusters of materials such as alcohol and water were produced by an adiabatic expansion phenomenon. In this article, cluster formation is discussed using thermodynamics and fluid dynamics. To investigate the interactions of polyatomic cluster ions with solid surfaces, various kinds of substrates such as Si(100), SiO2, mica, polymethyl methacrylate, and metals were irradiated by ethanol, methanol, and water cluster ion beams. To be specific, chemical reactions between radicals of polyatomic molecules and surface Si atoms were investigated, and low-irradiation damage as well as high-rate sputtering was carried out on the Si(100) surfaces. Furthermore, materials processing methods including high-rate sputtering, surface modification, and micropatterning were demonstrated with ethanol and water cluster ion beams.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bernas, H. and de Lamaestre, R.E.: Ion beam-induced quantum dot synthesis in glass, in Ion-Beam-Based Nanofabrication, edited by Ila, D., Baglin, J., Kishimoto, N., and Chu, P.K. (Mater. Res. Soc. Proc. 1020, Warrendale, PA, 2007), p. 101.Google Scholar
2.Vandervorst, W. and Everaert, J.L.: Rosseel, E., Jurczak, M., Hoffman, T., Eyben, P., Mody, J., Zschatzsch, G., Koelling, S., Gilbert, M., Poon, T., Del Agua Borniquel, J., Foad, M., Duffy, R., and Pawlak, B.J.: Conformal doping of FINFETs: A fabrication and metrology challenge, in Proceedings of the 17th International Conference on Ion Implantation Technology IIT2008, edited by Seebauer, E.G., Felch, S.B., Jain, A., and Kondratenko, Y.V. (AIP Conf. Proc. 1066, Melville, New York, 2008), p. 449.Google Scholar
3.Bardos, L. and Barankova, H.: Plasma processes at atmospheric and low pressures. Vacuum 83, 522 (2009).CrossRefGoogle Scholar
4.Brauer, G., Szyszka, B., Vergohl, M., and Bandorf, R.: Magnetron sputtering—milestones of 30 years. Vacuum 83, 1354 (2010).CrossRefGoogle Scholar
5.Orloff, J., Utlaut, M., and Swanson, L.: High Resolution Focused Ion Beams: FIB and Its Applications (Kluwer Academic/Plenum Publishers, New York, 2003).CrossRefGoogle Scholar
6.Stokes, D.J., Roussel, L., Wilhelmi, O., Giannuzzi, L.A., and Hubert, D.H.W.: Recent advances in FIB technology for nano-prototyping and nano-characterization, in Ion-Beam-Based Nanofabrication, edited by Ila, D., Baglin, J., Kishimoto, N., and Chu, P.K. (Mater. Res. Soc. Proc. 1020, Warrendale, PA, 2007), p. 15.Google Scholar
7.Lyneis, C.M., Leitner, D., Toda, D.S., Sabbi, G., Prestemon, S., Caspi, S., and Ferracin, P.: Fourth generation electron cyclotron resonance ion sources. Rev. Sci. Instrum. 79, 02A321 (2008).CrossRefGoogle ScholarPubMed
8.Peters, J.: New developments in multicusp H- ion sources for high energy accelerators. Rev. Sci. Instrum. 79, 02A515 (2008).CrossRefGoogle ScholarPubMed
9.Hemsworth, R.S., Tanga, A. and Antoni, V.: Status of the ITER neutral beam injection system. Rev. Sci. Instrum. 79, 02C109 (2008).CrossRefGoogle ScholarPubMed
10.Ishikawa, J.: Negative-ion source applications. Rev. Sci. Instrum. 79, 02C506 (2008).CrossRefGoogle ScholarPubMed
11.Jacob, W. and Roth, J.: Chemical Sputtering. In Behrisch, R., Eckstein, W.(Eds.) Sputtering by Particle Bombardment, Top. Appl. Phys. 110 (Springer, Berlin/Heidelberg/New York, 2007) p. 329.CrossRefGoogle Scholar
12.Buffat, Ph. and Borel, J-P.: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976).CrossRefGoogle Scholar
13.Morse, M.D.: Clusters of transition-metal atoms. Chem. Rev. 86, 1049 (1986).CrossRefGoogle Scholar
14.Hsieh, H. and Averback, R.S.: Molecular-dynamics investigation of cluster-beam deposition. Phys. Rev. B 42, 5365 (1990).CrossRefGoogle ScholarPubMed
15.Averback, R.S., Ghaly, M., and Zhu, H.: Cluster solid interactions—A molecular-dynamics investigation. Radiat. Eff. Defects Solids 130-131, 211 (1994).CrossRefGoogle Scholar
16.Insepov, Z., Yamada, I., and Sosnowski, M.: Sputtering and smoothing of metal surface with energetic gas cluster beams. Mater. Chem. Phys. 54, 234 (1998).CrossRefGoogle Scholar
17.Moseler, M., Rattunde, O., Nordiek, J., and Haberland, H.: On the origin of surface smoothing by energetic cluster impact: Molecular dynamics simulation and mesoscopic modeling. Nucl. Instrum. Methods B 164-165, 522 (2000).CrossRefGoogle Scholar
18.Yasumatsu, H. and Kondow, T.: Reactive scattering of clusters and cluster ions from solid surfaces. Rep. Prog. Phys. 66, 1783 (2003).CrossRefGoogle Scholar
19.Takaoka, G.H., Nakayama, K., Okada, T., and Kawashita, M.: Size analysis of ethanol cluster ions and their sputtering effects on solid surfaces, in Proceedings of the 16th International Conference on Ion Implantation Technology, edited by Kirkby, K.J., Gwilliam, R., Smith, A., and Chivers, D. (AIP Conf. Proc., 2006), p. 321.Google Scholar
20.Takaoka, G.H., Kawashita, M., and Okada, T.: Irradiation effects of methanol cluster ion beams on solid surfaces, in Ion-Beam-Based Nanofabrication, edited by Ila, D., Baglin, J., Kishimoto, N., and Chu, P.K. (Mater. Res. Soc. Proc. 1020, Warrendale, PA, 2007), p. 159.Google Scholar
21.Takaoka, G.H., Kawashita, M., and Okada, T.: Physical and chemical sputtering of solid surfaces irradiated by ethanol cluster ion beams. Rev. Sci. Instrum. 79, 02C503 (2008).CrossRefGoogle ScholarPubMed
22.Ryuto, H., Tada, K., and Takaoka, G.H.: Irradiation effects on slid surfaces by water cluster ion beams. Vacuum 84, 501 (2010).CrossRefGoogle Scholar
23.Takaoka, G.H., Noguchi, H., Nakayama, K., Hironaka, Y., and Kawashita, M.: Fundamental characteristics of liquid cluster ion source for surface modification. Nucl. Instrum. Methods B 237, 402 (2005).CrossRefGoogle Scholar
24.Haberland, H.: Clusters of Atoms and Molecules (Springer-Verlag, Berlin, 1994).Google Scholar
25.Merikanto, J., Vehkamaki, H., and Zapadinsky, E.: Monte Carlo simulations of critical cluster sizes and nucleation rates of water. Chem. Phys. 121, 914 (2004).Google ScholarPubMed
26.Wegener, P.: Nonequilibrium Flows (Marcel Dekker, New York, 1969).Google Scholar
27.Weast, R.C. and Astle, M.J. (Eds.): CRC Handbook of Physics and Chemistry, 63rd ed. (CRC Press, Boca Raton, FL, 1982).Google Scholar
28.Tolman, R.C.: The effect of droplet size on surface tension. Chem. Phys. 17, 333 (1949).Google Scholar
29.Hagena, O.F. and Obert, W.J.: Cluster formation in expanding supersonic jets – effect of pressure, temperature, nozzle size, and test gas. Chem. Phys. 56, 1793 (1972).Google Scholar
30.Hagena, O.F.: Scaling laws for condensation in nozzle flows. Phys. Fluids 17, 894 (1974).CrossRefGoogle Scholar
31.Hagena, O.F.: Cluster ion sources. Rev. Sci. Instrum. 63, 2374 (1992).CrossRefGoogle Scholar
32.Borowski, P., Jaroniec, J., Janowski, T., and Wolinski, K.: Quantum cluster equilibrium theory treatment of hydrogen-bonded liquids: Water, methanol and ethanol. Mol. Phys. 101, 1413 (2003).CrossRefGoogle Scholar
33.Insepov, Z., Sosnowski, M., and Yamada, I.: Molecular-dynamics simulation of metal surface sputtering by energetic rare-gas cluster impact. Trans. Mater. Res. Soc. Jpn. 17, 111 (1994).Google Scholar
34.Kingery, W.D., Bowen, H.K., and Uhlmann, D.R.: Introduction to Ceramics (John Wiley & Sons Inc., New York, 1976) Chap. 9.Google Scholar
35.Insepov, Z., Sosnowski, M., Takaoka, G.H., and Yamada, I.: Molecular dynamics simulation of the effects of energetic cluster ion impact on solid surface, in Materials Synthesis and Processing Using Ion Beams, edited by Culbertson, R.J., Holland, O.W., Jones, K.S., and Maex, K. (Mater. Res. Soc. Proc. 316, 1994), p. 999.Google Scholar
36.Insepov, Z. and Yamada, I.: Molecular-dynamics simulation of surface sputtering by energetic rare-gas cluster impact. Surf. Rev. Lett. 3, 1023 (1996).CrossRefGoogle Scholar
37.Ryuto, H., Ozaki, R., Mukai, H., and Takaoka, G.H.: Interaction of ethanol cluster ion beam with silicon surface. Vacuum 84, 1419 (2010).CrossRefGoogle Scholar
38.Maissel, L.: in Handbook of Thin Film Technology, edited by Maissel, L.I. and Glang, R. (McGraw-Hill, New York, 1970) Chap. 4.Google Scholar
39.Chopra, K.L.: Thin Film Deposition Technology. Thin Film Phenomena (McGraw-Hill, New York, 1979) Chap. 2.Google Scholar
40.Frost, F., Fechner, R., Ziberi, B., Flamm, D., and Schindler, A.: Large area smoothing of optical surfaces by low-energy ion beams. Thin Solid Films 459, 100 (2004).CrossRefGoogle Scholar
41.Eckstein, W.: Sputtering Yields. In Behrisch, R. and Eckstein, W.(Eds.) Sputtering by Particle Bombardment, Top. Appl. Phys. 110 (Springer, Berlin/Heidelberg/New York, 2007) p. 33.CrossRefGoogle Scholar
42.Seki, T., Kaneko, T., Takeuchi, D., Aoki, T., Matsuo, J., Insepov, Z., and Yamada, I.: STM observation of HOPG surfaces irradiated with Ar cluster ions. Nucl. Instrum. Methods B 121, 498 (1997).CrossRefGoogle Scholar
43.Picraux, S.T. and Pope, L.E.: Tailored surface modification by ion implantation and laser treatment. Science 226, 615 (1984).CrossRefGoogle ScholarPubMed
44.Langer, R.: Perspectives: Drug delivery-drugs on target. Science 293, 58 (2001).CrossRefGoogle Scholar
45.Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007).CrossRefGoogle ScholarPubMed
46.Carbone, M., Piancastelli, M.N., Paggel, J.J., Weindel, C., and Horn, K.: A high-resolution photoemission study of ethanol adsorption on Si(111)-(7x7). Surf. Sci. 412-413, 441 (1998).CrossRefGoogle Scholar
47.Casaletto, M.P., Zanoni, R., Carbone, M., Piancastelli, M.N., Aballe, L., Weiss, K., and Horn, K.: High-resolution photoemission study of ethanol on Si(100)2x1. Surf. Sci. 447, 237 (2000).CrossRefGoogle Scholar
48.Silvestrelli, P.L.: Adsorption of ethanol on Si(100) from first-principles calculations. Surf. Sci. 552, 17 (2004).CrossRefGoogle Scholar
49.Roberts, G.G. (Ed.): Langmuir-Blodgett Films (Plenum, New York, 1990) Chap.7.CrossRefGoogle Scholar
50.Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., and Belcher, A.M.: Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665 (2000).CrossRefGoogle ScholarPubMed
51.Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M.: Self-assembled monolayers of thiolates as a form of nanotechnology. Chem. Rev. 105, 1103 (2005).CrossRefGoogle ScholarPubMed