Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T23:47:19.719Z Has data issue: false hasContentIssue false

Surface effects in field-assisted sintering

Published online by Cambridge University Press:  31 January 2011

J. R. Groza
Affiliation:
Chemical Engineering and Materials Science Department, University of California at Davis, Davis, California 95616-5294
M. Garcia
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94551-0808
J. A. Schneider
Affiliation:
Department of Mechanical Engineering, Mississippi State University, Mississippi State, Mississippi 39762
Get access

Abstract

The more-stringent requirements for densification of new out-of-equilibrium powders have created a growing demand for nonconventional rapid sintering processes. Among those, field-assisted sintering techniques (FASTs) have seen a recent renewed interest motivated by their ability to consolidate a large variety of powder materials into high densities in short times. Characterization of a range of FAST-consolidated materials displayed relevant associated surface effects, such as grain boundary cleaning with direct grain-to-grain contact and advanced densification without sintering aids. These effects may be attributed to phenomena ranging from dielectric breakdown to a possible nonconventional plasma generation. Such surface effects provided a better intergranular bonding of powder particles during subsequent sintering

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Munir, Z.A. and Schmalzried, H., J. Mater. Synth. Process. 1, 3 (1993).Google Scholar
2.Conrad, H., Sprecher, A.F., Cao, W.D., and Lu, X.P., J. of Materials 42, 28 (1990).Google Scholar
3.Kashchiev, D., J. Crys. Growth, 13/14, 128 (1972).CrossRefGoogle Scholar
4.Groza, J.R., Field Activated Sintering, Metals Handbook, Powder Metal Technologies and Applications, Vol. 7 (ASM International, Metals Park, OH, 1998), pp. 583589.Google Scholar
5.Yoo, S., Groza, J.R., Sudarshan, T.S., and Yamazaki, K., J. of Materials, Poroshk. Metall., Scripta Materialia 34, 13831386 (1996).Google Scholar
6.Feng, A. and Munir, Z.A., Metall. Mater. B Trans. 26B, 581 (1995).CrossRefGoogle Scholar
7.Groza, J.R., Curtis, J.D., and Krämer, M., J. Am. Ceram. Soc., 83, 1281 (2000).CrossRefGoogle Scholar
8.Goodwin, T.J., Yoo, S.H., Matteazzi, P., and Groza, J.R., Nanostructr. Mater. 8, 559 (1997).CrossRefGoogle Scholar
9.Taylor, G.F., U.S. Patent No. 1,896, 854 (1933).Google Scholar
10.Lenel, F.V., J. of Materials 7, 158 (1955).Google Scholar
11.Okazaki, K., Rev. Particulate Mater. 2, 215 (1994).Google Scholar
12.Raichenko, A.I., Kolchinskii, M.Z., and Levina, D.A., Proshk. Metall., 166, 19 (1976).Google Scholar
13.Choi, G.S., Kim, J.Y., and Lee, D.H., J. Korean Inst. Met. Mater. 30, 840 (1992).Google Scholar
14.Groza, J.R. and Risbud, S.H., J. Mater. Res. 7, 2643 (1992).CrossRefGoogle Scholar
15.Kimura, H., J. Phys. (Paris) 1–3, 423 (1993).Google Scholar
16.Helle, A.S., Easterling, K.E., and Asby, M.F., Acta Metall. 33, 2163 (1985).CrossRefGoogle Scholar
17.Ashby, M.F., Acta Metall. 22, 275 (1974).CrossRefGoogle Scholar
18.Raichenko, A.I., Chernova, E.S., and Olevski, E.A., J. Phys. IV, Coll. C 7 3, 1235 (1993).Google Scholar
19.Knittel, S.M. and Risbud, S.H., in Microwave Plasma Densification of Aluminum Nitride, edited by Munir, Z.A. and Holt, J.B. (VCH Publishers, New York, 1990), p. 414.Google Scholar
20.Kuramoto, N., Taniguchi, H. and Aso, I., Ceram Bull. 68, 883 (1989).Google Scholar
21.Yokogawa, M., Yamazaki, K., Risbud, S.H., Groza, J.R., Aoyama, H., and Shoda, K., in Advancement of Intelligent Production, edited by Usui, E. (Elsevier Science and The Japan Society for Precision Engineering, Japan, 1994) p. 582.CrossRefGoogle Scholar
22.Risbud, S.H., Groza, J.R., and Kim, M.J., Philos. Mag. 69, 525 (1994).CrossRefGoogle Scholar
23.O'Dwyer, J.J., The Theory of Breakdown in Dielectrics (Oxford, Clarendon Press, 1964).Google Scholar
24.Kim, D., Pak, H.R., and Okazaki, K., Mater. Sci. Eng. A 104, 191 (1988).CrossRefGoogle Scholar
25.Zavaliangos, A., Drexel University (personal communication, 1999).Google Scholar
26.Luo, P., Nieh, T.G., Schwartz, A.J., and Lenk, T.J., Mater. Sci. Eng., A 204, 59 (1995).CrossRefGoogle Scholar
27.Harris, J.H., J. of Materials 50 (6), 56 (1998).Google Scholar
28.Eliasson, B. and Kogelschatz, U., IEEE Trans. Plasma Sci. 19, 1063 (1991).CrossRefGoogle Scholar
29.Llewellyn-Jones, F., in Electrical Breakdown and Discharges in Gases, Part A: Fundamental Processes and Breakdown, edited by Kunhardt, E.E. and Luessen, L.H. (Plenum Press, New York, 1983), pp. 171.Google Scholar
30.Hendricks, C.D. in Electrostatics and Its Applications, edited by Moore, A.D. (John Wiley, New York, 1973), p. 60.Google Scholar
31.Mishra, R.S., Mukherjee, A.K., Yamazaki, K., and Shoda, K., J. Mater. Res, 11, 1144 (1968).CrossRefGoogle Scholar
32.Schneider, J.A., Mishra, R.S., and Mukherjee, A.K., in Advanced Synthesis and Processing of Composites and Advanced Ceramics II, edited by Spriggs, R., Munir, Z., and Logan, K. (American Ceramic Society, Westerville, OH, 1996), Vol. 79, p. 143.Google Scholar
33.Mishra, R.S., Risbud, S.H., and Mukherjee, A.K., J. Mater. Res. 13, 86 (1998).CrossRefGoogle Scholar
34.Kemer, E.L. and Johnson, D.L., Am. Ceram. Bull. 64, 1132 (1985).Google Scholar
35.Thiessen, K.P., J. Chim. Phys. 83, 717 (1986).CrossRefGoogle Scholar
36.Burenkov, G.L., Bodnar, V.T., Krylova, N.A., and Raichenko, A.I., Poroshk. Metall. 294 (6) 35 (1987).Google Scholar
37.Dowding, R., ARL, (personal communication, 1998).Google Scholar
38.Kimura, H., Nanostruct. Mater. 9, 93 (1997).CrossRefGoogle Scholar