Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:50:49.587Z Has data issue: false hasContentIssue false

Superplastic deformation characteristics and constitution equation in rapidly solidified Mg–Al–Ga alloy

Published online by Cambridge University Press:  31 January 2011

A. Uoya
Affiliation:
Sendai Institute of Materials Science and Technology, YKK Corporation, Tomiya Miyagi 981–33, Japan
T. Shibata
Affiliation:
Sendai Institute of Materials Science and Technology, YKK Corporation, Tomiya Miyagi 981–33, Japan
K. Higashi
Affiliation:
Department of Mechanical System Engineering, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 593, Japan
A. Inoue
Affiliation:
Institute of Materials Research, Tohoku University, Sendai Miyagi 980, Japan
T. Masumoto
Affiliation:
Institute of Materials Research, Tohoku University, Sendai Miyagi 980, Japan
Get access

Abstract

The hot deformation characteristics of a newly typed, high strength magnesium-based alloy, Mg–8.3 wt.% Al–8.1 wt.% Ga alloy, produced by rapidly solidified and powder metallurgy method have been investigated. Tensile tests were carried out at a temperature range from 523 to 623 K and a strain rate range from 10−4 to 1 s−1. Superplastic characteristics were found and, especially, a maximum elongation-to-failure of 1080% was obtained at 573 K and at a relatively high strain rate of 10−2 s−1. Because of the presence of fine microstructures at high temperatures, the optimum superplastic strain rate of the Mg–Al–Ga alloy was higher than that of the reported conventional superplastic aluminum and magnesium alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pilling, J. and Ridley, N., Superplasticity in Crystalline Solids (The Institute of Metals, London, 1989).Google Scholar
2.Wadsworth, J., Nieh, T.G., and Sherby, O.D., Superplasticity in Advanced Materials (The Japan Society for Research on Superplasticity, Osaka, Japan, 1991), p. 13.Google Scholar
3.Mahoney, M.W. and Ghosh, A. K., Metall. Trans. 18A, 653 (1987).CrossRefGoogle Scholar
4.Matsuki, K., Staniek, G., Nakagawa, H., and Tikizawa, M., Z. Metallk. 79, 231 (1988).Google Scholar
5.Matsuda, S. and Yoshida, H., Technical report of SUMITOMO Light Metal Industries Ltd. Japan 34 (2), 66 (1993).Google Scholar
6.Pandy, M.C., Wadsworth, J., and Mukherjee, A.K., Mater. Sci. Eng. 80, 169 (1986).CrossRefGoogle Scholar
7.Cui, Z., Zhong, W., and Wei, Q., Scripta Metall. 30, 123 (1994).CrossRefGoogle Scholar
8.Higashi, K., Itsumi, S., Hoshikawa, M., Matsumura, Y., Ito, T., Tanimura, S., and Yoshida, H., Superplasticity in Advanced Materials (The Japan Society for Research on Superplasticity, Osaka, Japan, 1991).Google Scholar
9.Inoue, A., Yamamoto, M., Kimura, H.M., and Masumoto, T., J. Mater. Sci. Lett. 6, 194 (1987).CrossRefGoogle Scholar
10.Tsai, A. P., Inoue, A., and Masumoto, T., Metall. Trans. 19A, 391 (1988).CrossRefGoogle Scholar
11.Inoue, A., Ohtera, K., Tsai, A.P., and Masumoto, T., Jpn. J. Appl. Phys. 27, L479 (1988).CrossRefGoogle Scholar
12.Ohtera, K., Inoue, A., and Masumoto, T., Mater. Sci. Eng. A134, 1212 (1991).CrossRefGoogle Scholar
13.Nagahama, H., Ohtera, K., Higashi, K., Inoue, A., and Masumoto, T., Philos. Mag. Lett. 67, 225 (1993).CrossRefGoogle Scholar
14.Higashi, K., Mukai, T., Tanimura, S., Inoue, A., Masumoto, T., Kita, K., Ohtera, K., and Nagahora, J., Scripta Metall. 26, 191 (1992).CrossRefGoogle Scholar
15.Higashi, K., Uoya, A., Mukai, T., Tanimura, S., Inoue, A., Masumoto, T., and Ohtera, K., Mater. Sci. Eng. A181/182, 1068 (1994).CrossRefGoogle Scholar
16.Shibata, T., Kawanishi, M., Nagahora, J., Inoue, A., and Masumoto, T., Mater. Sci. Eng. A179/180, 632 (1994).CrossRefGoogle Scholar
17.Iwasaki, H., Higashi, K., Tanimura, S., Komatubara, T., and Hayami, S., Superplasticity in Advanced Materials (The Japan Society for Research on Superplasticity, Osaka, Japan, 1991), p. 447.Google Scholar
18.Bampton, C. C., Wasdsorth, J., and Ghosh, A.K., Treatise Mater. Sci. Technol. 31, 189 (1989).CrossRefGoogle Scholar
19.Ghosh, A. K. and Hamilton, C.H., Metall. Trans. 10A, 241 (1979).Google Scholar
20.Bieler, T. R. and Mukherjee, A. K., Scripta Metall. 24, 1003 (1990).CrossRefGoogle Scholar
21.Baudelet, B., Dang, M.C., and Bordeaux, F., Scripta Metall. 26, 573 (1992).CrossRefGoogle Scholar
22.Nieh, T. G. and Wadsworth, J., JOM 44 (11), 46 (1992).CrossRefGoogle Scholar
23.Sherby, O. D. and Burke, P.M., Prog. Mater. Sci. 13, 325 (1967).Google Scholar
24.Walser, B. and Sherby, O.D., Scripta Metall. 16, 213 (1982).CrossRefGoogle Scholar
25.Chin, N. Q., Juhasz, A., Tasnadi, P., and Kovacs, I., J. Mater. Sci. 25, 4767 (1990).CrossRefGoogle Scholar
26.Metenier, P., Gonzalez-Doncel, G., Rauno, O. A., Wolfenstine, J., and Sherby, O. D., Mater. Sci. Eng. A125, 195 (1990).CrossRefGoogle Scholar
27.Valiev, R. Z., Krasilinikov, N. A., and Tsenev, N. K., Mater. Sci. Eng A137, 35 (1991).CrossRefGoogle Scholar
28.Takuda, H., Kikuchi, S., and Hatta, N., J. Mater. Sci. 27, 937 (1992).CrossRefGoogle Scholar
29.Sato, T., Kaneko, J., and Suganuma, M., Jpn. Institute of Light Metal 44 (6), 345 (1992).CrossRefGoogle Scholar
30.Mohamed, F. A., J. Mater. Sci. 18, 582 (1983).CrossRefGoogle Scholar
31.Diffusion Data (Diffusion Information Center, Solothurn, Switzerland, and Ohio).Google Scholar