Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T00:14:30.072Z Has data issue: false hasContentIssue false

Substitutional solutes in AICo: Part I. Effects of solute on moduli, lattice parameters, and vacancy production

Published online by Cambridge University Press:  18 February 2016

Robert L. Fleischer*
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
Get access

Extract

The effects of solute-related defects in AICo are measured by changes that they produce in lattice parameter, specific gravity, and elastic moduli. By comparison with the effects of off-stoichiometry on the same parameters in binary Al-Co alloys, the solute-produced defects can be partially characterized. Cell occupancy numbers are calculated and used to infer that vacancies are formed on both sides of stoichiometry and also when solute replaces Al or Co in AICo. These data are also essential to testing the effects of the solutes studied—Mn, Re, and Ti—on mechanical hardening, to be reported separately in Part II.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kurnakow, N., Zemczuiny, S., and Zasadatelev, M., J. Inst. Met. 16, 305331 (1916).Google Scholar
2. Wood, D.L. and Westbrook, J.H., Trans. AIME 224, 10241037 (1962).Google Scholar
3. Mishima, Y., Ochiai, S., Hamao, N., Yodogawa, M., and Suzuki, T., Trans. Jpn. Inst. Met. 27, 648655 (1986).Google Scholar
4. Rawlings, R.D. and Staton-Bevan, A.E., J. Mater. Sci. 10, 505514 (1975).CrossRefGoogle Scholar
5. Aoki, K. and Izumi, O., Phys. Status Solidi A38, 587594 (1976).Google Scholar
6. Westbrook, J. H., Chapter 19 in High Strength Materials, edited by Zackay, V.F. (John Wiley, New York, 1965), pp. 724760.Google Scholar
7. Fleischer, R. L. and Hibbard, W. R., in NPL Conf. on Relation Between Structure and Properties of Metals (Her Majesty's Stationary Office, London, 1963), pp. 261297.Google Scholar
8. Hegel, W.C., in Intermetallic Compounds, edited by Westbrook, J.H. (John Wiley, New York, 1967), Chap. 20, pp. 377404.Google Scholar
9. Fleischer, R.L., Acta Metall. 10, 835842 (1962).Google Scholar
10. Mott, N.F. and Nabarro, F.R.N., Proc. Phys. Soc. 52, 86 (1940).Google Scholar
11. Crussard, C., Metaux and Corrosion 25, 203 (1950).Google Scholar
12. Fleischer, R.L., Acta Metall. 9, 9961000 (1961).Google Scholar
13. Fleischer, R.L., Acta Metall. 11, 203209 (1963).CrossRefGoogle Scholar
14. Fleischer, R.L., Scripta Metall. 21, 10831085 (1987).CrossRefGoogle Scholar
15. Fleischer, R.L., Mater. Sci. Lett. 7, 525526 (1988).CrossRefGoogle Scholar
16. Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985), Vol. 2.Google Scholar
17. Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: Handbook (M. I. T. Press, Cambridge, MA, 2nd ed., 1971).Google Scholar
18. Sturges, D. J., unpublished data collection, 1988.Google Scholar
19. Fleischer, R.L., Gilmore, R.S., and Zabala, R.J., J. Appl. Phys. 64, 29642967 (1988).Google Scholar
20. Harmouche, M.R. and Wolfenden, A., Mater. Sci. Eng. 84, 3542 (1986).Google Scholar
21. Harmouche, M.R. and Wolfenden, A., J. Test. Eval. 13, 424428 (1985).Google Scholar
22. Bradley, A. J. and Seager, G. C., J. Inst. Met. 64, 8191 (1991).Google Scholar
23. Cooper, M.J., Philos. Mag. 8, 805810 (1963).Google Scholar
23. Cooper, M.J., Philos. Mag. 8, 805810 (1963).Google Scholar
25. Bashkatov, A. N., Zelenin, L. P., Sidorenko, F. A., and Gel'd, P. V. Phys. Metals Metallog. 31 (no. 4), 4651 (1971).Google Scholar
26. Chang, Y.A. and Neumann, J.P., Prog. Solid State Chem. 14, 221301 (1982).Google Scholar