Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T14:23:42.405Z Has data issue: false hasContentIssue false

Study of polycarbonate degradation induced by irradiation with He+ ions

Published online by Cambridge University Press:  03 March 2011

Václav Švorčik
Affiliation:
Department of Solid State Engineering. Institute of Chemical Technology, 166 28 Prague, Czech Republic
Vladimír Rybka
Affiliation:
Department of Solid State Engineering. Institute of Chemical Technology, 166 28 Prague, Czech Republic
Ivo Miček
Affiliation:
Department of Solid State Engineering. Institute of Chemical Technology, 166 28 Prague, Czech Republic
Vladimír Hnatowicz
Affiliation:
Institute of Nuclear Research, Czech Academy of Sciences, 250 68 Řez, Czech Republic
Jiří Kvítek
Affiliation:
Institute of Nuclear Research, Czech Academy of Sciences, 250 68 Řez, Czech Republic
Get access

Abstract

A stack of five polycarbonate foils, each 1.4 μm thick, was irradiated with 1.3 MeV 4He+ ions to the dose of 1.1 × 1014 cm−2. Ion beam induced polymer degradation, as a function of the particle energy, was studied by UV-VIS and IR spectroscopy of individual foils. In the irradiated foils, a significant reduction of characteristic absorption bands is observed, indicating polymer degradation. Significant increase of the surface polarity, characterized by a polar component of the surface free energy, is also found. Both the degree of the polymer degradation and the surface polarity correlate with the total energy deposited by 4He+ ions in the foils.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Calgano, L., Compagnini, G., and Foti, G., Nucl. Instrum. Methods Phys. Res., Sect. B 65, 413 (1992).Google Scholar
2Dresselhaus, M. S., Wasserman, B., and Wnek, G. E., in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R., and White, C. W. (Mater. Res. Soc. Symp. Proc. 27, Elsevier Science Publishing, New York, 1984), p. 413.Google Scholar
3vorčík, V., Rybka, V., Endr't, R., Hnatowicz, V., and Kvitek, J., J. Appl. Polym. Sci. 49, 1939 (1993).CrossRefGoogle Scholar
4Torrisi, L. and Foti, G., J. Mater. Res. 5, 2723 (1990).CrossRefGoogle Scholar
5vorčík, V., Rybka, V., Jankovskij, O., Hnatowicz, V., and Kvítek, J., J. Mater. Res. 9, 643 (1994).CrossRefGoogle Scholar
6Ochsner, R., Kluge, A., Zechel-Malonn, S., Gong, L., and Ryssel, H., Nucl. Instrum. Methods Phys. Res., Sect. B 80/81, 1050 (1993).CrossRefGoogle Scholar
7vorčík, V., Rybka, V., Seidel, P., Hnatowicz, V., and Kvítek, J., Mater. Lett. 12, 434 (1992).CrossRefGoogle Scholar
8Ziegler, J. F., Biersack, J. P., and Littmark, U., in The Stopping and Ranges of Ions in Solids (Pergamon, New York, 1985).Google Scholar
9Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods Phys. Res., Sect 174, 257 (1980).CrossRefGoogle Scholar
10Feurer, T., Sauerbrez, R., Smayling, M. C., and Story, B. J., Appl. Phys. A56, 275 (1993).CrossRefGoogle Scholar
11vorčík, V., Rybka, V., Hnatowicz, V., and Kvítek, J., Mater. Lett. 19, 329 (1994).CrossRefGoogle Scholar
12Ranby, B. and Rabek, J. F., in Photodegradation, Photooxidationand Photostabilization of Polymers (John Wiley, London, 1975).Google Scholar
13vorčík, V., Endrst, R., Rybka, V., Hnatowicz, V., and Černý, F., J. Electrochem. Soc. 141, 582 (1994).CrossRefGoogle Scholar
14vorčík, V., Endr't, R., Rybka, V., Hnatowicz, V., and Kvítek, J., J. Electrochem. Soc. 140, 549 (1993).Google Scholar
15Lwaki, M., Yabe, K., Fukuda, A., Watanabe, H., Itoh, A., and Takeda, M., Nucl. Instrum. Methods Phys. Res., Sect. B 80/81, 1080 (1993).Google Scholar
16Davenas, J., Nucl. Instrum. Methods Phys. Res., Sect. B 71, 33 (1992).CrossRefGoogle Scholar