Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:55:46.290Z Has data issue: false hasContentIssue false

Study of Microstructure in SrTiO3/Si by High-resolution Transmission Electron Microscopy

Published online by Cambridge University Press:  31 January 2011

G. Y. Yang
Affiliation:
Materials Research Science and Engineering Center, University of Maryland, College Park, Maryland 20742
J. M. Finder
Affiliation:
Physical Science Research Laboratories, Motorola Inc., Tempe, Arizona 85284
J. Wang
Affiliation:
Physical Science Research Laboratories, Motorola Inc., Tempe, Arizona 85284
Z. L. Wang
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0245
Z. Yu
Affiliation:
Physical Science Research Laboratories, Motorola Inc., Tempe, Arizona 85284
J. Ramdani
Affiliation:
Physical Science Research Laboratories, Motorola Inc., Tempe, Arizona 85284
R. Droopad
Affiliation:
Physical Science Research Laboratories, Motorola Inc., Tempe, Arizona 85284
K. W. Eisenbeiser
Affiliation:
Physical Science Research Laboratories, Motorola Inc., Tempe, Arizona 85284
R. Ramesh
Affiliation:
Materials Research Science and Engineering Center, University of Maryland, College Park, Maryland 20742
Get access

Abstract

Microstructure in the SrTiO3/Si system has been studied using high-resolution transmission electron microscopy and image simulations. SrTiO3 grows heteroepitaxially on Si with the orientation relationship given by (001)STO//(001)Si and [100]STO//[110]Si. The lattice misfit between the SrTiO3 thin films and the Si substrate is accommodated by the presence of interfacial dislocations at the Si substrate side. The interface most likely consists of Si bonded to O in SrTiO3. The alternative presentation of Sr and Si atoms along the interface leads to the formation of 2× and 3× Sr configurations. Structural defects in the SrTiO3 thin film mainly consist of tilted domains and dislocations.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eisenbeiser, K., Finder, J.M., Yu, Z., Ramdani, J., Curless, J.A., Hallmark, J.A., Droopad, R.W., Ooms, J., Salem, L., Bradshaw, S., and Overgaard, C.D., Appl. Phys. Lett. 76, 1324 (2000).CrossRefGoogle Scholar
McKee, R.A., Walker, F.J., and Chisholm, M.F., Phys. Rev. Lett. 81, 3014 (1998).CrossRefGoogle Scholar
Mori, H. and Ishiwara, H., Jpn. J. Appl. Phys., Part 2 30, L1415 (1991).CrossRefGoogle Scholar
Yu, Z., Droopad, R., Ramdani, J., Curless, J.A., Overgaard, C.D., Finder, J.M., Eisenbeiser, K., Wang, J., Hallmark, J.A., and Ooms, W.J., in Ultrathin SiO2 and High-K Materials for ULSI Gate Dielectrics, edited by Hubb, H.R., Richter, C.A., Green, M.L., Lucovsky, G., and Hattori, T. (Mater. Res. Soc. Symp. Proc. 567, Warrendale, PA, 1999), p. 427.Google Scholar
Moon, B. and Ishiwara, H., Jpn. J. Appl. Phys., Part 1 33, 1472 (1994).CrossRefGoogle Scholar
McKee, R.A., Walker, F.J., and Chisholm, M.F., in Ultrathin SiO2 and High-K Materials for ULSI Gate Dielectrics, edited by Hubb, H.R., RIchter, C.A., Green, M.L., Lucovsky, G., and Hattori, T. (Mater. Res. Soc. Symp. Proc. 567, Warrendale, PA, 1999), 415.Google Scholar
Setter, N. and Waser, R., Acta Mater. 48, 151 (2000).CrossRefGoogle Scholar
Yu, Z., Ramdani, J., Curless, J.A., Finder, J.M., Overgaard, C.D., Droopad, R., Eisenbeiser, K.W., Hallmark, J.A., and Ooms, W.J., J. Vac. Sci. Technol. B 18, 1653 (2000).CrossRefGoogle Scholar
Yu, Z., Ramdani, J., Curless, J.A., Overgaard, C.D., Finder, J.M., Droopad, R., Eisenbeiser, K.W., Hallmark, J.A., and Ooms, W.J., J. Vac. Sci. Technol. B 18, 2139 (2000).CrossRefGoogle Scholar
Wilk, G.D., Wallace, R.M., and Anthony, J.M., J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
Kizilyalli, I., Huang, R., and Roy, P., IEEE Electron Device Lett. 19, 423 (1998).CrossRefGoogle Scholar
Park, D., King, Y.C., Lu, Q., King, T.J., Hu, C., Kalnitsky, A., Tay, S.P., and Cheng, C., IEEE Electron Device Lett. 19, 441 (1998).CrossRefGoogle Scholar
Roy, P.K. and Kizilyalli, I.C., Appl. Phys. Lett. 72, 2835 (1998).CrossRefGoogle Scholar
Yokota, K., Yamada, T., Miyashita, F., Hirai, K., Takano, H., and Kumagai, M., Thin Solid Films 344, 109 (1998).CrossRefGoogle Scholar
Morita, M., Fukumoto, H., Imura, T., and Osaka, Y., J. Appl. Phys. 58, 2407 (1985).CrossRefGoogle Scholar
Wilk, G.D. and Wallace, R.M., Appl. Phys. Lett. 76, 112 (2000).CrossRefGoogle Scholar
Wilk, G.D. and Wallace, R.M., Appl. Phys. Lett. 74, 2854 (1999).CrossRefGoogle Scholar
Markov, I. and Stoyanov, S., Contemp. Phys. 28, 267 (1987).CrossRefGoogle Scholar
Ikuhara, Y. and Pirouz, P., Microsc. Res. Tech. 40, 206 (1998).3.0.CO;2-S>CrossRefGoogle Scholar
Robertson, J., J. Vac. Sci. Technol. B 18, 1785 (2000).CrossRefGoogle Scholar
Merwe, J.H. Van der, Philos. Mag. 7, 1433 (1962).CrossRefGoogle Scholar
Merwe, J.H. Van der, J. Appl. Phys. 34, 117 (1963).CrossRefGoogle Scholar
Matthews, J.W., J. Vac. Sci. Technol. 12, 126 (1975).CrossRefGoogle Scholar
Matthews, J.W. and Blakeslee, A.E., J. Crys. Growth 27, 118 (1974).Google Scholar
Matthews, J.W. and Blakeslee, A.E., J. Crys. Growth 32, 265 (1976).CrossRefGoogle Scholar
Hirth, J.P., Acta Mater. 48, 93 (2000).CrossRefGoogle Scholar
Matthews, J.W., Philos. Mag. 13, 1207 (1966).CrossRefGoogle Scholar
Matthews, J.W., Mader, S., and Light, T.B., J. Appl. Phys. 41, 3800 (1970).CrossRefGoogle Scholar
Vincent, R., Philos. Mag. 19, 1127 (1969).CrossRefGoogle Scholar
Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., and Koinuma, H., Science 266, 1540 (1994).CrossRefGoogle Scholar
Wang, J., Hallmark, J., Marshall, D.S., Ooms, W.J., Ordejon, P., Junquera, J., Hu, X., Yao, X., and Sarid, D., presented at the APS Centennial Meeting, Atlanta, GA, March 20–26, 1999. And personal exchange of results with Dr. Jun Wang.Google Scholar