Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T14:58:43.436Z Has data issue: false hasContentIssue false

Structure and microstructure of near infrared-absorbing Au–Au2S nanoparticles

Published online by Cambridge University Press:  31 January 2011

Mei Chee Tan
Affiliation:
Molecular Engineering of Biological and Chemical Systems, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576
Jackie Y. Ying
Affiliation:
Molecular Engineering of Biological and Chemical Systems, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307; and Institute of Bioengineering and Nanotechnology, The Nanos, Singapore 138669
Gan Moog Chow*
Affiliation:
Molecular Engineering of Biological and Chemical Systems, Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576; and Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
*
a)Address all correspondence to this author. e-mail: msecgm@nus.edu.sg
Get access

Abstract

Near infrared (NIR) absorbing nanoparticles synthesized by the reduction of HAuCl4 with Na2S exhibited absorption bands at ∼530 nm, and in the NIR region of 650–1100 nm. The NIR optical properties were not found to be related to the earlier proposed Au2S–Au core-shell microstructure in previous studies. From a detailed study of the structure and microstructure of as-synthesized particles in this work, S-containing, Au-rich, multiply-twinned nanoparticles were found to exhibit NIR absorption. They consisted of amorphous AuxS (where x = 2), mostly well mixed within crystalline Au, with a small degree of surface segregation of S. Therefore, NIR absorption was likely due to interfacial effects on particle polarization from the introduction of AuxS into Au particles, and not the dielectric confinement of plasmons associated with a core-shell microstructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Frangioni, J.V.: In vivonear-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626 2003CrossRefGoogle ScholarPubMed
2Weissleder, R.: A clearer vision for in vivoimaging. Nat. Biotechnol. 19, 316 2001CrossRefGoogle Scholar
3Oldenburg, S.J., Averitt, R.D., Westcott, S.L.Halas, N.J.: Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243 1998Google Scholar
4Loo, C., Lowery, A., Halas, N., West, J.Drezek, R.: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709 2005Google Scholar
5Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J.West, J.L.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100, 13549 2003CrossRefGoogle ScholarPubMed
6Sershen, S.West, J.: Implantable, polymeric systems for modulated drug delivery. Adv. Drug Delivery Rev. 54, 1225 2002CrossRefGoogle ScholarPubMed
7Hirsch, L.R., Jackson, J.B., Lee, A., Halas, N.J.West, J.L.: A whole blood immunoassay using gold nanoshells. Anal. Chem. 75, 2377 2003CrossRefGoogle ScholarPubMed
8Ren, L.Chow, G.M.: Synthesis of NIR-sensitive Au–Au2S nanocolloids for drug delivery. Mater. Sci. Eng., C 23, 113 2003Google Scholar
9Chow, G.M., Tan, M.C., Ren, L.Ying, J.Y.: NIR-sensitive nanoparticle. U.S. Patent (Application Pending) No. 2006099146 (2006)Google Scholar
10Kittel, C.Introduction to Solid State Physics 8 ed.John Wiley & Sons Hoboken, NJ 2005Google Scholar
11Kreibig, U.Vollmer, M.: Optical Properties of Metal Clusters Springer Berlin 1995Google Scholar
12Link, S.El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212 1999CrossRefGoogle Scholar
13Link, S.El-Sayed, M.A.: Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409 2000CrossRefGoogle Scholar
14Zhou, H.S., Honma, I.Komiyama, H.: Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys. Rev. B: Solid State 50, 12052 1994Google Scholar
15Averitt, R.D., Sarkar, D.Halas, N.J.: Plasmon resonance shifts of Au-coated Au2S nanoshells. Phys. Rev. Lett. 78, 4217 1997Google Scholar
16Averitt, R.D., Westcott, S.L.Halas, N.J.: Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B 16, 1824 1999Google Scholar
17Norman, T.J. Jr., Grant, C.D., Magana, D., Zhang, J.Z., Liu, J., Cao, D., Bridges, F.Buuren, A.V.: Near infrared optical absorption of gold nanoparticle aggregates. J. Phys. Chem. B 106, 7005 2002Google Scholar
18Licht, S.: Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulfides. J. Electrochem. Soc. 135, 2971 1988CrossRefGoogle Scholar
19Tan, M.C., Ying, J.Y.Chow, G.M. to be submittedGoogle Scholar
20Klug, H.P.Alexander, L.E.: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials 2 ed.John Wiley & Sons New York 1974Google Scholar
21Koningsberger, D.C.Prins, R.: X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES John Wiley & Sons New York 1988Google Scholar
22Rehr, J.J.Albers, R.C.: Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 3 2000Google Scholar
23Gurman, S.J.: Interpretation of EXAFS data. J. Synchrotron Rad. 2, 56 1995CrossRefGoogle ScholarPubMed
24Stern, E.A.: Theory of the extended x-ray absorption fine structure. Phys. Rev. B 10, 3027 1974CrossRefGoogle Scholar
25Sayers, D.E., Stern, E.A.Lytle, F.W.: New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray absorption fine structure. Phys. Rev. Lett. 27, 1204 1971Google Scholar
26Petiau, J., Sainctavit, P.Calas, G.: K x-ray absorption spectra and electronic structure of chalcopyrite, CuFeS2. Mater. Sci. Eng., B 1, 237 1988CrossRefGoogle Scholar
27Ren, L.Chow, G.M. Singapore-MIT Alliance (2003, unpublished work)Google Scholar
28Rehr, J.J., Albers, R.C.Zabinsky, S.I.: High-order multiple-scattering calculations of x-ray absorption fine structure. Phys. Rev. Lett. 69, 3397 1992Google Scholar
29Stern, E.A., Newville, M., Ravel, B., Yacoby, Y.Haskel, D.: The UWXAFS analysis package: Philosophy and details. Physica B 208–209, 117 1995Google Scholar
30Watts, J.F.Wolstenholme, J.: An Introduction to Surface Analysis by XPS and AES John Wiley & Sons New York 2003Google Scholar
31Gillet, M.: Structure of small metallic particles. Surf. Sci. 67, 139 1977CrossRefGoogle Scholar
32Uyeda, N., Nishino, M.Suito, E.: Nucleus interactions and fines structures of colloidal gold particles. J. Colloid Interface Sci. 43, 264 1972Google Scholar
33Ino, S.: Epitaxial growth of metals on rocksalt faces cleaved in vacuum: II. Orientation and structure of gold particles formed in ultrahigh vacuum. J. Phys. Soc. Jpn. 21, 346 1966CrossRefGoogle Scholar
34Komoda, T.: Study on the structure of evaporated gold particles by means of high resolution electron microscope. Jap. J. Appl. Phys. 7, 27 1968Google Scholar
35Jena, P., Khanna, S.N.Rao, B.K.: Physics and Chemistry of Finite Systems: From Clusters to Crystals Vol. 1, Kluwer Academic Dordrecht 1992 93CrossRefGoogle Scholar
36Wang, L., Liu, H., Chen, K.Hu, Z.: The local orientational orders and structures of liquid and amorphous metals Au and Ni during rapid solidification. Physica B 239, 267 1997Google Scholar
37Wynblatt, P.Ku, R.C.: Surface energy and solute strain energy effects in surface segregation. Surf. Sci. 65, 511 1977Google Scholar
38Liu, F.Metiu, H.: Dynamics of phase separation of crystal surfaces. Phys. Rev. B 48, 5808 1993Google Scholar
39Shankar, S.S., Rai, A., Ahmad, A.Sastry, M.: Controlling the optical properties of lemon grass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem. Mater. 17, 566 2005CrossRefGoogle Scholar
40Shankar, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A.Sastry, M.: Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3, 482 2004CrossRefGoogle ScholarPubMed