Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T02:44:31.968Z Has data issue: false hasContentIssue false

Structurally complex metallic coatings in the Al-Cu system and their orientation relationships with an icosahedral quasicrystal

Published online by Cambridge University Press:  31 January 2011

Samuel Kenzari
Affiliation:
Institut Jean Lamour, UMR 7198, CNRS–Nancy Université–UPV Metz, Ecole des Mines de Nancy, 54042 Nancy Cedex, France
Valérie Demange
Affiliation:
Sciences Chimiques de Rennes, UMR 6226, CNRS–Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
Vincent Fournée*
Affiliation:
Institut Jean Lamour, UMR 7198, CNRS–Nancy Université–UPV Metz, Ecole des Mines de Nancy, 54042 Nancy Cedex, France
*
a)Address all correspondence to this author. e-mail: vincent.fournee@mines.inpl-nancy.fr
Get access

Abstract

Quasicrystals have been identified as alloys possessing unusually low surface energy. This results in poor adhesion properties of quasicrystalline coatings when deposited on metallic substrates, hindering the development of these new materials for technological applications. Here we investigate the possible use of complex Al-Cu metallic phases as interface layers to accommodate the structural and electronic mismatch between a quasicrystalline coating and a metallic substrate and improve adhesion. First, we show that all stable low-temperature phases of the Al-Cu system can be grown as thin films using DC magnetron sputtering. Among the various possible phases, we select the γ-brass γ-Al4Cu9 as a promising candidate for the interface layer. Then the γ-Al4Cu9 phase is grown on the fivefold surface of an icosahedral (i-) Al-Pd-Mn quasicrystal. The interface is investigated by transmission electron microscopy and shows a clear texturing of the film. The grains exhibit rotational epitaxy with the substrate. We find that the interface is mainly composed of a β-phase of unknown chemical composition and sometimes exhibits γ grains in direct contact with the quasicrystalline substrate. Occasionally, we observe a fourth phase at the β/γ interface, identified as β1, possessing a lattice parameter aβ1 equal to 2aβ and 2/3aγ.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dong, C.The δ-Al4Cu9 phase as an approximant of quasicrystals. Philos. Mag. A 73, 1519 (1996)CrossRefGoogle Scholar
2.Dong, C., Zhang, Q.H., Wang, D.H., Wang, Y.M.Al-Cu approximant in the Al3Cu4 alloy. Eur. Phys. J. B 6, 25 (1998)CrossRefGoogle Scholar
3.Dong, C., Zhang, Q.H., Wang, D.H., Wang, Y.M.Al-Cu approximants and associated B2 chemical twinning modes. Micron 31, 507 (2000)CrossRefGoogle ScholarPubMed
4.Fournée, V., Belin-Ferré, E., Dubois, J.M.Study of Al-Cu Hume-Rothery alloys and their relationship to the electronic properties of quasicrystals. J. Phys. Condens. Matter 10, 4231 (1998)CrossRefGoogle Scholar
5.Fournée, V., Mazin, I., Papaconstantopoulos, D.A., Belin-Ferré, E.Electronic-structure calculations of Al-Cu alloys: Comparison with experimental results on Hume-Rothery phases. Philos. Mag. B 79, 205 (1999)CrossRefGoogle Scholar
6.Gulay, L.D., Harbrecht, B.The crystal structure of ζ-Al3Cu4. J. Alloys Compd. 367, 103 (2004)CrossRefGoogle Scholar
7.Ma, X.L., Rüdiger, A., Liebertz, H., Köster, U., Liu, W.A new structural variant of the ζ-Al3Cu4 an its orientation relationship with the cubic γ-Al4Cu9. Scr. Mater. 39, 707 (1998)CrossRefGoogle Scholar
8.Trambly de Laissardière, G., Dankházi, Z., Belin, E., Sadoc, A., Duc, N.M., Mayou, D., Keegan, M.A., Papaconstantopoulos, D.A.Experimental and theoretical electronic distributions in Al-Cu-based alloys. Phys. Rev. B 51, 14035 (1995)CrossRefGoogle Scholar
9.Trambly de Laissardière, G., Nguyen-Manh, D., Mayou, D.Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides. Prog. Mater. Sci. 50, 679 (2005)CrossRefGoogle Scholar
10.Dubois, J.M.Basics of Thermodynamics and Phase Transitions in Complex Intermetallics edited by E. Belin-Ferré (World Scientific, Singapore 2008)1 31Google Scholar
11.Belin-Ferré, E., Dubois, J.M.Wetting of aluminium based complex metallic alloys. Int. J. Mater. Res. 97, 985 (2006)Google Scholar
12.Dubois, J.M.The applied physics of quasicrystals. Phys. Scr. T. 49A, 17 (1993)CrossRefGoogle Scholar
13.Dubois, J.M., Brunet, P., Belin-Ferré, E.Quasicrystals: Current Topics (World Scientific, Singapore 2000)498 532CrossRefGoogle Scholar
14.Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.Metallic phase with long-range orientational order and no translational periodicity. Phys. Rev. Lett. 53, 1951 (1984)CrossRefGoogle Scholar
15.Dubois, J.M.Useful Quasicrystals (World Scientific, Singapore 2005)CrossRefGoogle Scholar
16.Duguet, T., Ledieu, J., Dubois, J.M., Fournée, V.Surface alloys as interfacial layers between quasicrystalline and periodic materials. J. Phys. Condens. Matter 20, 314009 (2008)CrossRefGoogle Scholar
17.Chen, H., Heald, S.M.Glancing angle EXAFS studies of Cu-Al thin film interfaces. Physica B 158, 658 (1989)CrossRefGoogle Scholar
18.Hurtado, M.R.F., Portillo, J., Maniette, Y., Adorno, A.T., Benedetti, A.V.A complex structure in the (β+γ0) region of the Cu–Al alloys. J. Alloys Compd. 280, 188 (1998)CrossRefGoogle Scholar
19.Jiang, H.G., Dai, J.Y., Tong, H.Y., Ding, B.Z., Song, Q.H., Hu, Z.Q.Interfacial reactions on annealing Cu/Al mulilayer thin films. J. Appl. Phys. 74, 6165 (1993)CrossRefGoogle Scholar
20.Liu, X.J., Ohnuma, I., Kainuma, R., Ishida, K.J.Phase equilibria in the Cu-rich portion of the Cu–Al binary system. J. Alloys Compd. 264, 201 (1998)CrossRefGoogle Scholar
21.Ene, C.B., Schmitz, G., Al-Kassab, T., Kirchheim, R.Solid state reaction in sandwich-type Al/Cu thin films. Ultramicroscopy 107, 802 (2007)CrossRefGoogle ScholarPubMed
22.Geng, J., Oelhafen, P.Photoelectron spectroscopy study of Al-Cu interfaces. Surf. Sci. 452, 161 (2000)CrossRefGoogle Scholar
23.Mozetic, M., Zalar, A., Bogataj, T., Arcon, I., Preseren, R.Comparison of AES and EXAFS analysis of a thin Cux Aly layer on Al substrate. Vacuum 50, 299 (1998)CrossRefGoogle Scholar
24.Mozetic, M., Zalar, A., Drobnic, M.Self-controlled diffusion of Al in Cu thin film. Vacuum 50, 1 (1998)CrossRefGoogle Scholar
25.Vandenberg, J.M., Hamm, R.A.An in situ x-ray study of phase transformation in Cu-Al thin film couples. Thin Solid Films 97, 313 (1982)CrossRefGoogle Scholar
26.Bonasso, N., Petitot, C., Rouxel, D., Pigeat, P.In situ control of AlCuFe thin film crystallization using optical pyrometry. Thin Solid Films 485, 8 (2005)CrossRefGoogle Scholar
27.Bonasso, N., Pigeat, P.Preparation of Al-Cu-Fe ultra-thin quasicrystalline films without protective coatings by MBE: Influence of processing. Mater. Sci. Eng., A 349, 224 (2003)CrossRefGoogle Scholar
28.Bonasso, N., Pigeat, P.Real time study of the growth of i-AlCuFe in very thin films obtained by simultaneous deposition of the components. J. Non-Cryst. Solids 334–335, 509 (2004)CrossRefGoogle Scholar
29.Bonasso, N., Pigeat, P., Rouxel, D., Weber, B.Effect of oxygen on the making of AlCuFe quasicrystalline coatings. Thin Solid Films 409, 165 (2002)CrossRefGoogle Scholar
30.Cekada, M., Panjan, P., Dolinsek, J., Zalar, A., Medunic, Z., Jaksic, M., Radic, N.Diffusion during annealing Al/Cu/Fe thin films. Thin Solid Films 515, 7135 (2007)CrossRefGoogle Scholar
31.Grenet, T., Giroud, F., Joulaud, J.L., Capitan, M.Formation of icosahedral Al-Cu-Fe quasicrystal in annealed thin multilayers. Philos. Mag. A 82, 2909 (2002)CrossRefGoogle Scholar
32.Dong, C.The concept of the approximants of quasicrystals. Scr. Metall. Mater. 33, 239 (1995)CrossRefGoogle Scholar
33.Murray, J.L.Al-Cu system. Int. Mater. Rev. 30, 211 (1985)CrossRefGoogle Scholar
34.Bielmann, M., Barranco, A., Ruffieux, P., Gröning, O., Fasel, R., Widmer, R., Gröning, P.Formation of Al4Cu9 on the 5-fold surface of icosahedral AlPdMn. Adv. Eng. Mater. 7, 392 (2005)CrossRefGoogle Scholar
35.Buchanan, J.D.R., Hase, T.P.A., Tanner, B.K., Chen, P.J., Gan, L., Powell, C.J., Egelhoff, W.F.Anomaleously large intermixing in aluminium-transition metal bilayers. Phys. Rev. B 66, 104427 (2002)CrossRefGoogle Scholar
36.Bancel, A., Heiney, P.A.Icosahedral alloys: Phase purity and phason strains. J. Phys. Colloq. 47, 341 (1986)CrossRefGoogle Scholar
37.Zhang, Z., Kuo, K.H.Local icosahedral order in nickel-titanium (NiTi2) icosahedral quasicrystal. J. Microsc. 146, 313 (1987)CrossRefGoogle Scholar
38.Letoublon, A.Diffuse scattering and phasons in icosahedral and modulated icosahedral Al-Pd-Mn phases. Ph.D. Thesis Institut National Polytechnique de Grenoble, Grenoble 2000 226Google Scholar
39.Bolliger, B., Erbudak, M., Vvedensky, D.D., Zurkirch, M., Kortan, A.R.Surface structural transitions on the icosahedral quasicrystal Al70Pd20Mn10. Phys. Rev. Lett. 80, 5369 (1998)CrossRefGoogle Scholar
40.Villars, P., Calvert, L.D.Pearson's Handbook of Crystallographic Data for Intermetallic Phases Vol. 1 (ASM International, Materials Park, OH 1998)Google Scholar
41.Hultgren, R., Desai, P.R., Hawkins, D.T., Gleiser, M., Keiley, K.K.Selected Values of the Thermodynamic Properties of Selected Binary Alloys (American Society for Metals, Metals Park, OH 1973)Google Scholar
42.Srivastava, A., Yu-Zhang, K., Kilian, L., Frigério, J., Rivory, J.Interfacial diffusion effect on phase transitions in Al/Mn multilayered thin films. J. Mater. Sci. 42, 185 (2007)CrossRefGoogle Scholar
43.Shen, Z., Kramer, M.J., Jenks, C.J., Goldman, A.I., Lograsso, T., Delaney, D., Heinzig, M., Raberg, W., Thiel, P.A.Crystalline surface structure induced by ion sputtering of Al-rich icosahedral quasicrystals. Phys. Rev. B 58, 9961 (1998)CrossRefGoogle Scholar
44.Barrow, J.A., Fournée, V., Ross, A.R., Thiel, P.A., Shimoda, M., Tsai, A.P.Photoemission studies of the sputter-induced phase transformation on the Al-Cu-Fe surface. Surf. Sci. 539, 54 (2003)CrossRefGoogle Scholar
45.Shi, F., Shen, Z., Delaney, D.W., Goldman, A.I., Jenks, C.J., Kramer, M.J., Lograsso, T., Thiel, P.A., van Hove, M.A.The surface structure of a beta-Al(Cu1-xFex)-(110) film formed on an AlCuFe quasicrystal substrate analyzed by dynamical LEED. Surf. Sci. 411, 86 (1998)CrossRefGoogle Scholar
46.Sastry, G.V.S., Ramachandrarao, P.Transformation studies on vacancy ordered metastable phases in melt spun Al-Cu alloysProceedings of the 4th International Conference on Rapidly Quenched Metals (1981)Google Scholar
47.Widjaja, E.J., Marks, L.D.Models for quasicrystal–crystal epitaxy. J. Phys. Condens. Matter 20, 314003 (2008)CrossRefGoogle Scholar