Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T14:54:49.124Z Has data issue: false hasContentIssue false

Structural properties of near-stoichiometric composition of Ba(B′1/3B″2/3)O3 (B′ = Mg, Co, or Zn and B″ = Nb or Ta) perovskites

Published online by Cambridge University Press:  27 April 2011

Dmytro Grebennikov*
Affiliation:
Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
Peter Mascher*
Affiliation:
Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
*
a)Address all correspondence to these authors. e-mail: grebend@mcmaster.ca
Get access

Abstract

Near-stoichiometric compositions of Ba(B′1/3B″2/3)O3 (B′ = Mg, Co, or Zn and B″ = Nb or Ta) perovskite-type materials with nonstoichiometry on Ba and B′ positions were studied by room temperature Raman spectroscopy and transmission electron microscopy. The studied materials with 1:2 ratio of B-site cations belong to the family of perovskites that has tolerance factor larger than unity, indicating formation of a strained structure. This family of materials exhibits phase transition from a completely disordered phase having space group Pm-3m to a 1:2-ordered phase with space group P-3m1. Measured Raman spectra were attributed to the presence of 1:2-cation order and are characterized by the presence of seven modes, the strongest of which at 800 cm−1 originates from collective motion of oxygen octahedra. The appearance of a mode at 670 cm−1 in Co-containing samples was ascribed to the formation of a 1:1-ordered phase and was confirmed by selected-area electron diffraction.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Plourde, J.K., Linn, D.F., O’Bryan, H.M., and Thomson, J.: Ba2Ti9O20 as a microwave dielectric resonator. J. Am. Ceram. Soc. 58, 418 (1975).CrossRefGoogle Scholar
2.Lin, W.Y. and Speyer, R.F.: Dielectric properties of microstructure-controlled Ba2Ti9O20 resonators. J. Am. Ceram. Soc. 82, 325 (1999).CrossRefGoogle Scholar
3.O’Bryan, H.M., Thomson, J., and Plourde, J.K.: A new BaO-TiO2 compound with temperature-stable high permittivity and low microwave loss. J. Am. Ceram. Soc. 57, 450 (1974).CrossRefGoogle Scholar
4.Cava, R.J.: Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54 (2001).CrossRefGoogle Scholar
5.Wakino, K., Minai, K., and Tamura, H.: Microwave characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonators. J. Am. Ceram. Soc. 67, 278 (1984).CrossRefGoogle Scholar
6.Kawashima, S., Nishida, M., Ueda, I., and Ouchi, H.: Ba(Zn1/3Ta2/3)O3 ceramics with low-dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 66, 421 (1983).CrossRefGoogle Scholar
7.Matsumoto, K., Hiuga, T., Tanada, K., and Ichimura, H.: Ba(Mg1/3Ta2/3)O3 ceramics with ultra-low loss at microwave frequencies, in Proceedings of the 6th IEEE International Symposium on Application of Ferroelectrics, (Institute of electrical and Electronic Engineers, New York, 1986), p. 118.Google Scholar
8.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distancies in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
9.Davies, P.K., Tong, J., and Negas, T.: Effect of ordering-induced domain boundaries on low-loss Ba(Zn1/3Ta2/3)O3-BaZrO3 perovskite microwave dielectrics. J. Am. Ceram. Soc. 80, 1727 (1997).CrossRefGoogle Scholar
10.Chai, L. and Davies, P.K.: Effect of M4+(Ce,Sn,Ti) B-site substitutions on cation ordering in Ba(Mg1/3Ta2/3)O3. J. Am. Ceram. Soc. 80, 3193 (1997).CrossRefGoogle Scholar
11.Molodetsky, I. and Davies, P.K.: Effect of Ba(Y1/2Nb1/2)O3 and BaZrO3 on the cation order and properties of Ba(Co1/3Nb2/3)O3 microwave ceramics. J. Eur. Ceram. Soc. 21, 2587 (2001).CrossRefGoogle Scholar
12.Chia, C.-T., Chen, Y.-C., Cheng, H.-F., and Lin, I.-N.: Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Nb2/3)O3 ceramics: I. Raman spectroscopy. J. Appl. Phys. 94, 3360 (2003).CrossRefGoogle Scholar
13.Shimada, T.: Dielectric loss and damping constants of lattice vibrations in xBa(Mg1/3,Ta2/3)O3 ceramics. J. Eur. Ceram. Soc. 23, 2647 (2003).CrossRefGoogle Scholar
14.Chia, C.-T., Chang, P.-J., Chen, M.-Y., Lin, I.-N., Ikawa, H., and Lin, L.-J.: Oxygen-octahedral phonon properties of xBaTiO3+(1-x)Ba(Mg1/3Ta2/3)O3 and xCa(Sc1/2Nb1/2)O3+(1-x)Ba(Sc1/2Nb1/2)O3 microwave ceramics. J. Appl. Phys. 101, 084115 (2007).CrossRefGoogle Scholar
15.Reaney, I.M., Colla, E.L., and Setter, N.: Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys. 33, 3984 (1994).CrossRefGoogle Scholar
16.Halasyamani, P.S. and Poeppelmeier, K.R.: Noncentrosymmetric oxides. Chem. Mater. 10, 2753 (1998).CrossRefGoogle Scholar
17.Stucky, G.D., Philips, M.L.F., and Thurman, E.G.: The potassium titanyl phosphate structure field: A model for new nonlinear optical materials. Chem. Mater. 1, 492 (1989).CrossRefGoogle Scholar
18.Evans, H.T.: The crystal structure of tetragonal barium titanate. Acta Crystallogr. 4, 377 (1951).CrossRefGoogle Scholar
19.Ting, V., Liu, Y., Withers, R.L., and Noren, L.: An electron diffraction and bond valence sum study of the space group symmetries and structures of the photocatalytic 1:2 B site ordered A3CoNb2O9 perovskites (A=Ca2+, Sr2+, Ba2+). J. Solid State Chem. 177, 2295 (2004).CrossRefGoogle Scholar
20.Lufaso, M.W.: Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM′2O9 (M=Mg, Ni, Zn; M′=Nb, Ta) perovskites. Chem. Mater. 16, 2148 (2004).CrossRefGoogle Scholar
21.Vanderah, T.A., Collins, T.R., Wong-Ng, W., Roth, R.S., and Farber, L.: Phase equilibria and crystal chemistry in the BaO-Al2O3-Nb2O5 and BaO-Nb2O5 systems. J. Alloy. Comp. 346, 116 (2002).CrossRefGoogle Scholar
22.Moussa, S.M., Claridge, J.B., Rosseinsky, M.J., and Clarke, S.: Ba8ZnTa6O24: A high-Q microwave dielectric from a potentially diverse homologous series. Appl. Phys. Lett. 82, 4537 (2003).CrossRefGoogle Scholar
23.Kim, J.S., Kim, J.-W., Cheon, C.I., Kim, Y.-S., Nahm, S., and Byun, J.D.: Effect of chemical element doping and sintering atmosphere on the microwave dielectric properties of barium zinc tantalates. J. Eur. Ceram. Soc. 21, 2599 (2001).CrossRefGoogle Scholar
24.Davies, P.K., Borisevich, A., and Thirumal, M.: Communicating with wireless perovskites: Cation order and zinc volatilization. J. Eur. Ceram. Soc. 23, 2461 (2003).CrossRefGoogle Scholar
25.Tolmer, V. and Desgardin, G.: Low-temperature sintering and influence of the process on the dielectric properties of Ba(Zn1/3Ta2/3)O3. J. Am. Ceram. Soc. 80, 1981 (1997).CrossRefGoogle Scholar
26.Desu, S.B. and O’Bryan, H.M.: Microwave loss quality of BaZn0.33Ta0.67O3 ceramics. J. Am. Ceram. Soc. 68, 546 (1985).CrossRefGoogle Scholar
27.Hughes, H., Azough, F., Freer, R., and Iddles, D.: Development of surface phases in Ba(Zn1/3Nb2/3)O3-Ba(Ga1/2Ta1/2)O3 microwave dielectric ceramics. J. Eur. Ceram. Soc. 25, 2755 (2005).CrossRefGoogle Scholar
28.Foster, M.C., Brown, G.R., Nielson, R.M., and Abrahams, S.C.: Ba6CoNb9O30 and Ba6FeNb9O30: Two new tungsten-bronze-type ferroelectrics. Centrosymmetry of Ba5.2K0.8U2.4Nb7.6O30 at 300K. J. Appl. Cryst. 30, 495 (1997).CrossRefGoogle Scholar
29.Siny, G., Tao, R., Katiyar, R.S., Guo, R., and Bhalla, A.S.: Raman spectroscopy of Mg-Ta order-disorder in BaMg1/3Ta2/3O3. J. Phys. Chem. Solids 59, 181 (1998).CrossRefGoogle Scholar
30.Moreira, R.L., Matinaga, F.M., and Dias, A.: Raman-spectroscopic evaluation of the long-range order in Ba(B′1/3B″2/3)O3 ceramics. Appl. Phys. Lett. 78, 428 (2001).CrossRefGoogle Scholar
31.Lee, C.-T., Lin, Y.-C., Huang, C.-Y., Su, C.-Y., and Hu, C.-L.: Cation ordering and dielectric characteristics in barium zinc niobate. J. Am. Ceram. Soc. 90, 483 (2007).CrossRefGoogle Scholar
32.Chen, J., Chan, H.M., and Harmer, M.P.: Ordering structure and dielectric properties of undoped and La/Na-doped Pb(Mg1/3Nb2/3)O3. J. Am. Ceram. Soc. 72, 593 (1989).CrossRefGoogle Scholar
33.Hilton, A.D., Barber, D.J., Randall, C.A., and Shrout, T.R.: On short range ordering in the perovskite lead magnesium niobate. J. Mater. Sci. 25, 3461 (1990).CrossRefGoogle Scholar
34.Smolensky, G.A., Siny, I.G., Pisarev, R.V., and Kuzminov, E.G.: Raman scattering in ordered and disordered perovskite type crystals. Ferroelectrics 12, 135 (1976).CrossRefGoogle Scholar
35.Dai, Y., Zhao, G., and Liu, H.: First-principles study of the dielectric properties of Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3. J. Appl. Phys. 105, 034111 (2009).CrossRefGoogle Scholar
36.Setter, N. and Laulicht, I.: The observation of B-site ordering by Raman scattering in A(B′B′)O3 perovskites. Appl. Spectrosc. 41, 526 (1987).CrossRefGoogle Scholar
37.Tao, R., Guo, A.R., Tu, C.-S., Siny, I., Katiyar, R.S., Guo, R., and Bhalla, A.S.: Temperature dependent Raman spectroscopic studies on microwave dielectrics Sr(Al1/2Ta1/2)O3 and Sr(Al1/2Nb1/2)O3. Ferroelectrics Lett. 21, 79 (1996).CrossRefGoogle Scholar
38.Akbas, M.A. and Davies, P.K.: Ordering-induced microstructures and microwave dielectric properties of the Ba(Mg1/3Nb2/3)O3-BaZrO3 system. J. Am. Ceram. Soc. 81, 670 (1998).CrossRefGoogle Scholar
39.Belous, A.G., Ovchar, O.V., Kramarenko, O.V., Bezjak, J., Jancar, B., Suvorov, D., and Annino, G.: Low-loss microwave ceramics based on non-stoichiometric perovskites Ba(Co1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3. Ferroelectrics 367, 149 (2008).CrossRefGoogle Scholar
40.Kunz, M. and Brown, D.: Out-of-center distortions around octahedrally coordinated d0 transition metals. J. Solid State Chem. 115, 395 (1995).CrossRefGoogle Scholar
41.Harmer, M.P., Chen, J., Peng, P., Chan, H.M., and Smyth, D.M.: Control of microchemical ordering in relaxor ferroelectrics and related compounds. Ferroelectrics 97, 263 (1989).CrossRefGoogle Scholar
42.Barber, D.J., Moulding, K.M., Zhou, J.I., and Li, M.: Structural order in Ba(Zn1/3Ta2/3)O3, Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics. J. Mater. Sci. 32, 1531 (1997).CrossRefGoogle Scholar
43.Setter, N. and Cross, L.E.: The contribution of structural disorder to diffuse phase transitions in ferroelectrics. J. Mater. Sci. 15, 2478 (1980).CrossRefGoogle Scholar
44.Kim, I.-T., Kim, Y.-H., and Chung, S.J.: Order-disorder transition and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3 ceramics. Jpn. J. Appl. Phys. 34, 4096 (1995).CrossRefGoogle Scholar
45.Grebennikov, D., Ovchar, O., Belous, A., and Mascher, P.: Application of positron annihilation and Raman spectroscopies to the study of perovskite type materials. J. Appl. Phys. 108, 114109 (2010).CrossRefGoogle Scholar
46.Bieringer, M., Moussa, S.M., Noailles, L.D., Burrows, A., Kiely, C.J., Rosseinsky, M.J., and Ibberson, R.M.: Cation ordering, domain growth, and zinc loss in the microwave dielectric oxide Ba3ZnTa2O9-δ. Chem. Mater. 15, 586 (2003).CrossRefGoogle Scholar
47.Mallinson, P.M., Claridge, J.B., Rosseinsky, M.J., Ibberson, R.M., Wright, J.P., and Fitch, A.N.: High-temperature processing of Ba3ZnTa2O9: An in situ study using synchrotron x-ray powder diffraction. Chem. Mater. 19, 4731 (2007).CrossRefGoogle Scholar
48.Ahn, C.-W., Nahm, S., Lim, Y.-S., Choi, W., Park, H.-M., and Lee, H.-J.: Microstructure and microwave dielectric properties of Ba(Co1/3Nb2/3)O3 ceramics. Jpn. J. Appl. Phys. 41, 5277 (2002).CrossRefGoogle Scholar
49.Kingery, W.D.: Introduction to Ceramics (Wiley, New York, 1976).Google Scholar