Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:34:45.451Z Has data issue: false hasContentIssue false

Structural and ferromagnetic properties of Cu-doped GaN

Published online by Cambridge University Press:  18 July 2011

B. Seipel*
Affiliation:
Department of Physics, Portland State University, Portland, Oregon 97207-0751; and Oregon Nanoscience and Microtechnologies Institute (ONAMI)
R. Erni
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616
Amita Gupta
Affiliation:
Department of Physics, Portland State University, Portland, Oregon 97207-0751; Department of Materials Science, Tmfy-MSE, The Royal Institute of Technology, SE 100 44 Stockholm, Sweden; and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720
C. Li
Affiliation:
Department of Physics, Portland State University, Portland, Oregon 97207-0751; and Oregon Nanoscience and Microtechnologies Institute (ONAMI)
F.J. Owens
Affiliation:
Army Armament Research, Development and Engineering Center, Picatinny, New Jersey 07896; and Department of Physics, Hunter College, City University of New York, New York 10024
K.V. Rao
Affiliation:
Department of Materials Science, Tmfy-MSE, The Royal Institute of Technology, SE 100 44 Stockholm, Sweden
N.D. Browning
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95616; and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720
P. Moeck
Affiliation:
Department of Physics, Portland State University, Portland, Oregon 97207-0751 and Oregon Nanoscience and Microtechnologies Institute (ONAMI)
*
a) Address all correspondence to this author. e-mail: bseipel@pdx.edu
Get access

Abstract

The wurtzite polymorph of GaN was calcined with CuO in flowing nitrogen. As a result of this processing, both superconducting quantum interference device magnetometry and ferromagnetic resonance studies showed ferromagnetism in these samples at room temperature. These magnetic results are qualitatively consistent with very recent first-principle calculations [Wu et al., Appl. Phys. Lett.89, 062505 (2006)] that predict ferromagnetism in Cu-doped GaN. We focus in this paper on analyzing changes in the GaN atomic and electronic structure due to calcination with CuO using multiple analytical methods. Quantitative powder x-ray diffraction (XRD) showed changes in the lattice constants of the GaN due to the incorporation of copper (and possibly oxygen). Energy-dispersive x-ray spectroscopy proved the incorporation of copper into the GaN crystal structure. Electron-gun monochromated electron energy loss spectroscopy showed CuO calcinations-induced GaN band gap changes and indicated changes in the atomic arrangements due to the calcination process. The fine structure of the N K-edge showed differences in the peak ratios with respect to higher nominal CuO contents, corresponding to an increase in the c-lattice constant as confirmed by XRD.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001).Google Scholar
2Zutic, I., Fabian, J., and Sarma, S. Das: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).Google Scholar
3Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998).Google Scholar
4Chambers, S.A.: Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics. Surf. Sci. Rep. 61, 345 (2006).CrossRefGoogle Scholar
5Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000).Google Scholar
6Wu, R.Q., Peng, G.W., Liu, L., Feng, Y.P., Huang, Z.G., and Wu, Q.Y.: Cu-doped GaN: A dilute magnetic semiconductor from first-principles study. Appl. Phys. Lett. 89, 062505 (2006).CrossRefGoogle Scholar
7Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Guillen, J.M.O., Johansson, B., and Gehring, G.A.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673 (2003).CrossRefGoogle ScholarPubMed
8Theodoropoulou, N., Misra, V., Philip, J., LeClair, P., Berera, G.P., Moodera, J.S., Satpati, B., and Som, T.: High-temperature ferromagnetism in Zn1− xMnxO semiconductor thin films. J. Magn. Magn. Mat. 300, 407 (2006).CrossRefGoogle Scholar
9Neal, J.R., Behan, A.J., Ibrahim, R.M., Blythe, H.J., Ziese, M., Fox, A.M., and Gehring, G.A.: Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films. Phys. Rev. Lett. 96, 197208 (2006).Google Scholar
10Norberg, N.S., Kittilstved, K.R., Amonette, J.E., Kukkadapu, R.K., Schwartz, D.A., and Gamelin, D.R.: Synthesis of colloidal Mn2+: ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films. J. Am. Chem. Soc. 126, 9387 (2004).Google Scholar
11Reed, M.J., Arkun, F.E., Berkman, E.A., Elmasry, N.A., Zavada, J., Luen, M.O., Reed, M.L., and Bedair, S.M.: Effect of doping on the magnetic properties of GaMnN: Fermi level engineering. Appl. Phys. Lett. 86, 102504 (2005).CrossRefGoogle Scholar
12Thaler, G.T., Overberg, M.E., Gila, B., Frazier, R., Abernathy, C.R., Pearton, S.J., Lee, J.S., Lee, S.Y., Park, Y.D., Khim, Z.G., Kim, J., and Ren, F.: Magnetic properties of n-GaMnN thin films. Appl. Phys. Lett. 80, 3964 (2002).CrossRefGoogle Scholar
13Reed, M.L., El-Masry, N.A., Stadelmaier, H.H., Ritums, M.K., Reed, M.J., Parker, C.A., Roberts, J.C., and Bedair, S.M.: Room temperature ferromagnetic properties of (Ga, Mn)N. Appl. Phys. Lett. 79, 3473 (2001).Google Scholar
14Park, S.E., Lee, H.J., Cho, Y.C., Jeong, S.Y., Cho, C.R., and Cho, S.: Room-temperature ferromagnetism in Cr-doped GaN single crystals. Appl. Phys. Lett. 80, 4187 (2002).CrossRefGoogle Scholar
15Han, S.Y., Hite, J., Thaler, G.T., Frazier, R.M., Abernathy, C.R., Pearton, S.J., Choi, H.K., Lee, W.O., Park, Y.D., Zavada, J.M., and Gwilliam, R.: Effect of Gd implantation on the structural and magnetic properties of GaN and AlN. Appl. Phys. Lett. 88, 042102 (2006).Google Scholar
16Sharma, P., Gupta, A., Owens, F.J., Inoue, A., and Rao, K.V.: Room temperature spintronic material—Mn-doped ZnO revisited. J. Magn. Magn. Mat. 282, 115 (2004).Google Scholar
17Kittilstved, K.R. and Gamelin, D.R.: Activation of high-T-c ferromagnetism in Mn2+-doped ZnO using amines. J. Am. Chem. Soc. 127, 5292 (2005).Google Scholar
18Park, M.S. and Min, B.I.: Ferromagnetism in ZnO co-doped with transition metals: Zn1−x and (FeCo)xO and Zn1−x(FeCu)xO. Phys. Rev. B 68, 224436 (2003).CrossRefGoogle Scholar
19Kittilstved, K.R. and Gamelin, D.R.: Manipulating polar ferromagnetism in transition-metal-doped ZnO: Why manganese is different from cobalt (invited). J. Appl. Phys. 99 08M112 (2006).Google Scholar
20Kittilstved, K.R., Liu, W.K., and Gamelin, D.R.: Electronic structure origins of polarity-dependent high-TC ferromagnetism oxide-diluted magnetic semiconductors. Nat. Mater. 5, 291 (2006).Google Scholar
21Jayakumar, O.D., Gopalakrishnan, I.K., and Kulshreshtha, S.K.: The structural and magnetization studies of Co-doped ZnO co-doped with Cu: Synthesized by co-precipitation method. J. Mater. Chem. 15, 3514 (2005).CrossRefGoogle Scholar
22Radovanovic, P.V. and Gamelin, D.R.: High-temperature ferromagnetism in Ni2+-doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots. Phys. Rev. Lett. 91, 157202 (2003).CrossRefGoogle Scholar
23Buchholz, D.B., Chang, R.P.H., Song, J.H., and Ketterson, J.B.: Room-temperature ferromagnetism in Cu-doped ZnO thin films. Appl. Phys. Lett. 87, 082504 (2005).Google Scholar
24Gupta, A.: Novel room temperature ferromagnetic semiconductors. Ph.D. Thesis, Department of Materials Science, The Royal Institute of Technology, Stockholm, Sweden, 2004, p. 58.CrossRefGoogle Scholar
25Liu, C., Yun, F., and Morkoc, H.: Ferromagnetism of ZnO and GaN: A review. J. Mater. Sci. Mater. Electron. 16, 555 (2005).CrossRefGoogle Scholar
26Feng, X.B.: Electronic structures and ferromagnetism of Cu- and Mn-doped ZnO. J. Phys. Condens. Matter 16, 4251 (2004).CrossRefGoogle Scholar
27Wei, M., Braddon, N., Zhi, D., Midgley, P.A., Chen, S.K., Blamire, M.G., and MacManus-Driscoll, J.L.: Room temperature ferromagnetism in bulk Mn-doped Cu2O. Appl. Phys. Lett. 86, 072514 (2005).Google Scholar
28Brumage, W.H., Dorman, C.F., and Quade, C.R.: Temperature-dependent paramagnetic susceptibilities of Cu2+ and Co2+ as dilute impurities in ZnO. Phys. Rev. B 6310, 104411 (2001).Google Scholar
29Wahl, U., Rita, E., Correia, J.G., Alves, E., and Soares, J.G.: Lattice location and stability of implanted Cu in ZnO. Phys. Rev. B 69, 012102 (2004).Google Scholar
30Bogusławski, P. and Bernholc, J.: Properties of wurtzite w-MnN and of w-MnN inclusions in (Ga,Mn)N. Appl. Phys. Lett. 88, 9 (2006).CrossRefGoogle Scholar
31Pearton, S.J., Abernathy, C.R., Thaler, G.T., Frazier, R.M., Heo, Y.H., Ivill, M., Norton, D.P., and Park, Y.D.: Progress in wide bandgap ferromagnetic semiconductors and semiconducting oxides, in Defects and Diffusion in Semiconductors—An Annual Retrospective VII 230–232, 520 (2004).Google Scholar
32Pearton, S.J., Abernathy, C.R., Thaler, G.T., Frazier, R.M., Norton, D.P., Ren, F., Park, Y.D., Zavada, J.M., Buyanova, A., Chen, W.M., and Hebard, A.F.: Wide bandgap GaN-based semiconductors for spintronics. J. Phys. Condens. Matter 16, R209 (2004).CrossRefGoogle Scholar
33Owens, F.J.: Ferromagnetism above room temperature in bulk sintered gallium phosphide doped with manganese. J. Phys. Chem. Solids 66, 793 (2005).CrossRefGoogle Scholar
34Rodriguez-Carvajal, J.: FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France 127, 1990.Google Scholar
35Brink, H.A., Barfels, M.M.G., Burgner, R.P., and Edwards, B.N.: A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S). TEMs, Ultramicroscopy 96, 367 (2003).Google Scholar
36Erni, R., Browning, N.D., Dai, Z.R., and Bradley, J.P.: Analysis of extraterrestrial particles using monochromated electron energy-loss spectroscopy. Micron 36, 369379(2005).CrossRefGoogle ScholarPubMed
37Tiemeijer, C.: Operation modes of a TEM monochromator. Inst. Phys. Conf. Ser. 161, 191 (1999).Google Scholar
38Kim, J.Y., Rodriguez, J.A., Hanson, J.C., Frenkel, A.I., and Lee, P.L.: Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 125, 10684 (2003).Google Scholar
39http://abulafia.mt.ic.ac.uk/shannon/: Database of Ionic Radii.Google Scholar
40Herng, T.S., Lau, S.P., Yu, S.F., Yang, H.Y., Ji, X.H., Chen, J.S., Yasui, N., and Inaba, H.: Origin of room temperature ferromagnetism in ZnO: Cu films. J. Appl. Phys. 99, 4212 (2006).CrossRefGoogle Scholar
41Mattila, T. and Nieminen, R.M.: Ab initio study of oxygen point defects in GaAs, GaN, and AlN. Phys. Rev. B 54, 16676 (1996).Google Scholar
42Jin, Z.W., Fukumura, T., Kawasaki, M., Ando, K., Saito, H., Sekiguchi, T., Yoo, Y.Z., Murakami, M., Matsumoto, Y., Hasegawa, T., and Koinuma, H.: High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824 (2001).Google Scholar
43Egerton, R.F.: Electron energy-loss spectroscopy in the electron microscope, 485 (Plenum Press, New York, 1996).CrossRefGoogle Scholar
44Lazar, S., Hebert, C., and Zandbergen, H.W.: Investigation of hexagonal and cubic GaN by high-resolution electron energy-loss spectroscopy and density-functional theory. Ultramicroscopy 98, 249 (2004).Google Scholar
45Mizoguchi, T., Tanaka, I., Yoshioka, S., Kunisu, M., Yamamoto, T., and Ching, W.Y.: First-principles calculations of ELNES and XANES of selected wide-gap materials: Dependence on crystal structure and orientation. Phys. Rev. B 70, 045103 (2004).Google Scholar
46Specht, P., Ho, J.C., Xu, X., Armitage, R., Weber, E.R., Erni, R., and Kisielowski, C.: Band transitions in wurtzite GaN and InN determined by valence electron energy loss spectroscopy. Solid State Commun. 135, 340 (2005).Google Scholar