Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T00:57:47.576Z Has data issue: false hasContentIssue false

Strong visible light emission from silicon-oxycarbide nanowire arrays prepared by electron beam lithography and reactive ion etching

Published online by Cambridge University Press:  20 November 2015

Vasileios Nikas
Affiliation:
Colleges of Nanoscale Sciences and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203, USA
Natasha Tabassum
Affiliation:
Colleges of Nanoscale Sciences and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203, USA
Brian Ford
Affiliation:
Colleges of Nanoscale Sciences and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203, USA
Lloyd Smith
Affiliation:
IBM Microelectronics, Semiconductor Research and Development Center, Hopewell Junction, New York 12533, USA
Alain E. Kaloyeros
Affiliation:
Colleges of Nanoscale Sciences and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203, USA
Spyros Gallis*
Affiliation:
Colleges of Nanoscale Sciences and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203, USA
*
a)Address all correspondence to this author. e-mail: sgalis@sunypoly.edu
Get access

Abstract

The present report presents results from the fabrication, structural, and optical characteristics of sub-100 nm thermal chemical vapor deposition-grown silicon-oxycarbide (SiCxOy) nanowire (NW) arrays fabricated by e-beam lithography and reactive-ion-etching. The composition of SiCxOy materials follows closely the silicon-oxycarbide stoichiometry [SiCxO2(1−x), (0 < x < 1)] as observed by compositional and structural analysis. The corresponding structural and bonding evolution of SiCxOy are well-correlated with changes in their optical properties, as demonstrated by the linear dependence of their optical gap and refractive index with [Si–C]/[Si–O] bond–area ratio. By virtue of these advantages, properly tailored SiCxOy NWs were fabricated, exhibiting strong room-temperature visible photoluminescence (PL) through engineering of [Si–C]/[Si–O] bonds. The current studies focused on the thermal-oxidation and excitation intensity behavior of SiCxOy NWs revealed their very good stability, as their luminescence characteristics remain unchanged upon annealing in oxygen ambient (250 °C), while the PL intensity dependence on the excitation power-density exhibited a linear increase up to ∼800 W/cm2.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Grill, A., Gates, S.M., Ryan, T.E., Nguyen, S.V., and Priyadarshini, D.: Progress in the development and understanding of advanced low k and ultralow k dielectrics for very large-scale integrated interconnects—State of the art. Appl. Phys. Rev. 1, 011306 (2014).Google Scholar
King, S.W.: Dielectric barrier, etch stop, and metal capping materials for state of the art and beyond metal interconnects. ECS J. Solid State Sci. Technol. 4, N3029 (2015).Google Scholar
Gallis, S., Nikas, V., Suhag, H., Huang, M., and Kaloyeros, A.E.: White light emission from amorphous silicon oxycarbide (a-SiCxOy) thin films: Role of composition and post-deposition annealing. Appl. Phys. Lett. 97, 081905 (2010).Google Scholar
Vasin, A.V.: Structural and luminescent properties of carbonized silicon oxide thin layers. In Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting Engineering Materials, Nazarov, A., Balestra, F., Valeriya, K., Flandre, D., eds. (Springer: Heidelberg, Germany, 2014), p. 297.Google Scholar
Tamayo, A., Rubio, J., Rubio, F., Oteo, J.L., and Riedel, R.: Texture and micro-nanostructure of porous silicon oxycarbide glasses prepared from hybrid materials aged in different solvents. J. Eur. Ceram. Soc. 31, 1791 (2011).Google Scholar
Kim, Y.W., Kim, S.H., and Park, C.B.: Processing of closed-cell silicon oxycarbide foams from a preceramic polymer. J. Mater. Sci. 39, 5647 (2004).Google Scholar
Nghiem, Q.D., Cho, S.J., and Kim, D-P.: Synthesis of heat-resistant mesoporous SiOC ceramic and its hydrogen adsorption. J. Mater. Chem. 16, 558 (2006).Google Scholar
Karakuscu, A., Ponzoni, A., Aravind, P.R., Sberveglieri, G., and Soraru, G.D.: Gas sensing behavior of mesoporous SiOC glasses. J. Am. Ceram. Soc. 96, 2366 (2013).CrossRefGoogle Scholar
Liu, X., Xie, K., Zheng, C.M., Wang, J., and Jing, Z.Q.: Si-O-C materials prepared with a sol-gel method for negative electrode of lithium battery. J. Power Sources 214, 119 (2012).Google Scholar
Bhandavat, R. and Singh, G.: Stable and efficient Li-ion battery anodes prepared from polymer-derived silicon oxycarbide–carbon nanotube shell/core composites. J. Phys. Chem. C 117, 11899 (2013).Google Scholar
Zhuo, R., Colombo, P., Pantano, C., and Vogler, E.A.: Silicon oxycarbide glasses for blood-contact applications. Acta Biomater. 1, 583 (2005).CrossRefGoogle ScholarPubMed
Liang, D. and Bowers, J.E.: Recent progress in lasers on silicon. Nat. Photonics 4, 511 (2010).Google Scholar
Fang, Z., Chen, Q.Y., and Zhao, C.Z.: A review of recent progress in lasers on silicon. Opt. Laser Technol. 46, 103 (2013).Google Scholar
Fan, S., Villeneuve, P.R., Joannopoulos, J.D., and Schubert, E.F.: High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett. 78, 3294 (1997).Google Scholar
Guichard, A.R., Kekatpure, R.D., Brongersma, M.L., and Kamins, T.I.: Temperature-dependent Auger recombination dynamics in luminescent silicon nanowires. Phys. Rev. B 78, 235422 (2008).Google Scholar
He, Y., Fan, C., and Lee, S.T.: Silicon nanostructures for bioapplications. Nano Today 5, 282 (2010).CrossRefGoogle Scholar
Zhao, Y., Riemersma, C., Pietra, F., Koole, R., Donegá, C.M., and Meijerink, A.: High-temperature luminescence quenching of colloidal quantum dots. ACS Nano 6, 9058 (2012).Google Scholar
Tayagaki, T., Fukatsu, S., and Kanemitsu, Y.: Photoluminescence dynamics and reduced Auger recombination in Si1−xGex/Si superlattices under high-density photoexcitation. Phys. Rev. B 79, 041301 (2009).CrossRefGoogle Scholar
Gallis, S., Nikas, V., Eisenbraun, E., Huang, M., and Kaloyeros, A.E.: On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide. J. Mater. Res. 24, 2561 (2009).Google Scholar
Gallis, S., Nikas, V., Huang, M., Eisenbraun, E., and Kaloyeros, A.E.: Comparative study of the effects of thermal treatment on the optical properties of hydrogenated amorphous silicon-oxycarbide. J. Appl. Phys. 102, 024302 (2007).Google Scholar
Kroll, P.: Searching insight into the atomistic structure of SiCO ceramics. J. Mater. Chem. 20, 10528 (2010).Google Scholar
Bréquel, H., Parmentier, J., Walter, S., Badheka, R., Trimmel, G., Masse, S., Latournerie, J., Dempsey, P., Turquat, C., Chomel, A.D., Le Neindre-Prum, L., Jayasooriya, U.A., Hourlier, D., Kleebe, H-J., Soraru, G.D., Enzo, S., and Babonneau, F.: Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses. Chem. Mater. 16, 2585 (2004).Google Scholar
Wolfe, D.M., Hinds, B.J., Wang, F., Lucovsky, G., Ward, B.L., Xu, M., Nemanich, R.J., and Maher, D.M.: Thermochemical stability of silicon–oxygen–carbon alloy thin films: A model system for chemical and structural relaxation at SiC–SiO2 interfaces. J. Vac. Sci. Technol., A 17, 2170 (1999).Google Scholar
Tolstoy, V.P., Chernyshova, I.V., and Skryshevsky, V.A.: Chapter 5. In Handbook of Infrared Spectroscopy of Ultrathin Films, Wiley: New York, 2003.Google Scholar
Kim, Y.H., Hwang, M.S., Kim, H.J., Kim, J.Y., and Lee, Y.: Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films. J. Appl. Phys. 90, 3367 (2001).Google Scholar
Lehmann, A., Schumann, L., and Hubner, K.: Optical phonons in amorphous silicon oxides. I. Calculation of the Density of States and Interpretation of Lo-To Splittings of Amorphous SiO2 . Phys. Status Solidi B 117, 689 (1983).Google Scholar
Nikas, V., Gallis, S., Huang, M., Kaloyeros, A.E., Nguyen, A.P.D., Stesmans, A., and Afanas'ev, V.V.: The origin of white luminescence from silicon oxycarbide thin films. Appl. Phys. Lett. 104, 061906 (2014).Google Scholar
Sun, C.Q.: A model of bonding and band-forming for oxides and nitrides. Appl. Phys. Lett. 72, 6 (1998).Google Scholar
Skuja, L.: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids 239, 16 (1998).Google Scholar
Tessler, L.R. and Solomon, I.: Photoluminescence of tetrahedrally coordinated a-Si1−xCx:H. Phys. Rev. B 52, 10962 (1995).Google Scholar
Chollon, G.: Oxidation behaviour of ceramic fibres from the Si–C–N–O system and related sub-systems. J. Eur. Ceram. Soc. 20, 1959 (2000).Google Scholar
Grieshaber, W., Schubert, E.F., Goepfert, I.D., Karlicek, R.F. Jr., Schurman, M.J., and Tran, C.: Competition between band gap and yellow luminescence in GaN and its relevance for optoelectronic devices. J. Appl. Phys. 80, 4615 (1996).Google Scholar
Kovalev, D., Diener, J., Heckler, H., Polisski, G., Kunzner, N., and Koch, F.: Optical absorption cross sections of Si nanocrystals. Phys. Rev. B 61, 4485 (2000).Google Scholar