Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:03:40.607Z Has data issue: false hasContentIssue false

Stress evolution in silicon nanowires during electrochemical lithiation using in situ synchrotron X-ray microdiffraction

Published online by Cambridge University Press:  04 March 2019

Sasi Kumar Tippabhotla
Affiliation:
Xtreme Materials Laboratory (XML), Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore 487373, Singapore
Ihor Radchenko
Affiliation:
Xtreme Materials Laboratory (XML), Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore 487373, Singapore
Camelia V. Stan*
Affiliation:
Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, USA
Nobumichi Tamura
Affiliation:
Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, USA
Arief Suriadi Budiman*
Affiliation:
Xtreme Materials Laboratory (XML), Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore 487373, Singapore
*
a)Address all correspondence to this author. e-mail: suriadi@alumni.stanford.edu
Get access

Abstract

Silicon is a promising material for lithium-ion batteries. However, it expands by 300% on lithiation, leading to fracture. Nanostructuring of silicon is expected to be a promising method to improve the mechanical strength of the silicon electrodes. In the present work, a unique battery test cell was designed and fabricated to study the in situ stress evolution in the silicon nanowire (SiNW) electrode during electrochemical lithiation using synchrotron X-ray microdiffraction. The stress in the SiNWs at pristine state and during lithiation was evaluated using energy scans. The average stress in the pristine nanowires was found to be ∼40 MPa tensile, which changed to ∼325 MPa compressive on lithiation. Further, the deviatoric stress state in the SiNWs during lithiation was evaluated using Laue diffraction and the lithiated nanowires were found to be in triaxial stress state with high shear stresses. The technique and the findings provide new and more in-depth understanding of the stress evolution in the SiNWs during electrochemical lithiation.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

References

Omar, N., Daowd, M., van den Bossche, P., Hegazy, O., Smekens, J., Coosemans, T., and van Mierlo, J.: Rechargeable energy storage systems for plug-in hybrid electric vehicles—Assessment of electrical characteristics. Energies 5, 29522988 (2012).CrossRefGoogle Scholar
Lukic, S.M., Cao, J., Bansal, R.C., Rodriguez, F., and Emadi, A.: Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 55, 22582267 (2008).CrossRefGoogle Scholar
Saw, L.H., Ye, Y., and Tay, A.A.: Integration issues of lithium-ion battery into electric vehicles battery pack. J. Cleaner Prod. 113, 10321045 (2016).CrossRefGoogle Scholar
Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 3135 (2008).CrossRefGoogle ScholarPubMed
Li, J-Y., Xu, Q., Li, G., Yin, Y-X., Wan, L-J., and Guo, Y-G.: Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries. Mater. Chem. Front. 1, 16911708 (2017).CrossRefGoogle Scholar
Lee, S-J., Lee, J-K., Chung, S-H., Lee, H-Y., Lee, S-M., and Baik, H-K.: Stress effect on cycle properties of the silicon thin-film anode. J. Power Sources 97, 191193 (2001).CrossRefGoogle Scholar
Beaulieu, L., Eberman, K., Turner, R., Krause, L., and Dahn, J.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4, A137A140 (2001).CrossRefGoogle Scholar
Bruce, P.G., Scrosati, B., and Tarascon, J.M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 47, 29302946 (2008).CrossRefGoogle ScholarPubMed
Park, M-H., Kim, M.G., Joo, J., Kim, K., Kim, J., Ahn, S., Cui, Y., and Cho, J.: Silicon nanotube battery anodes. Nano Lett. 9, 38443847 (2009).CrossRefGoogle ScholarPubMed
Lee, S.W., McDowell, M.T., Berla, L.A., Nix, W.D., and Cui, Y.: Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl. Acad. Sci. U. S. A. 109, 40804085 (2012).CrossRefGoogle ScholarPubMed
Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., and Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 15221531 (2012).CrossRefGoogle ScholarPubMed
Ryu, I., Choi, J.W., Cui, Y., and Nix, W.D.: Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59, 17171730 (2011).CrossRefGoogle Scholar
Shelke, M.V., Gullapalli, H., Kalaga, K., Rodrigues, M.T.F., Devarapalli, R.R., Vajtai, R., and Ajayan, P.M.: Facile synthesis of 3D anode assembly with Si nanoparticles sealed in highly pure few layer graphene deposited on porous current collector for long life Li‐ion battery. Adv. Mater. Interfaces 4, 1601043 (2017).CrossRefGoogle Scholar
Zhou, X., Yin, Y-X., Wan, L-J., and Guo, Y-G.: Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem. Commun. 48, 21982200 (2012).CrossRefGoogle ScholarPubMed
Ma, T., Yu, X., Li, H., Zhang, W., Cheng, X., Zhu, W., and Qiu, X.: High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries. Nano Lett. 17, 39593964 (2017).CrossRefGoogle ScholarPubMed
Ma, H., Cheng, F., Chen, J.Y., Zhao, J.Z., Li, C.S., Tao, Z.L., and Liang, J.: Nest‐like silicon nanospheres for high‐capacity lithium storage. Adv. Mater. 19, 40674070 (2007).CrossRefGoogle Scholar
Kennedy, T., Brandon, M., and Ryan, K.M.: Advances in the application of silicon and germanium nanowires for high‐performance lithium‐ion batteries. Adv. Mater. 28, 56965704 (2016).CrossRefGoogle ScholarPubMed
Shim, H.C., Woo, C-S., and Hyun, S.: Silicon–carbon nanotube aerogel core–shell nanostructures for lithium-ion batteries with long-cycle life and high capacity. In ECS Meeting Abstracts, Vol. 3 (The Electrochemical Society, 2016); pp. 276–276.Google Scholar
Zhang, S., Du, Z., Lin, R., Jiang, T., Liu, G., Wu, X., and Weng, D.: Nickel nanocone‐array supported silicon anode for high‐performance lithium‐ion batteries. Adv. Mater. 22, 53785382 (2010).CrossRefGoogle ScholarPubMed
Yang, H., Huang, S., Huang, X., Fan, F., Liang, W., Liu, X.H., Chen, L-Q., Huang, J.Y., Li, J., and Zhu, T.: Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 12, 19531958 (2012).CrossRefGoogle ScholarPubMed
Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., Kushima, A., Liang, W.T., and Wang, J.W.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 33123318 (2011).CrossRefGoogle ScholarPubMed
Chang, S.W., Chuang, V.P., Boles, S.T., Ross, C.A., and Thompson, C.V.: Densely packed arrays of ultra‐high‐aspect‐ratio silicon nanowires fabricated using block‐copolymer lithography and metal‐assisted etching. Adv. Funct. Mater. 19, 24952500 (2009).CrossRefGoogle Scholar
Choi, W., Liew, T., Dawood, M., Smith, H.I., Thompson, C., and Hong, M.: Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett. 8, 37993802 (2008).CrossRefGoogle ScholarPubMed
Zhao, K., Pharr, M., Wan, Q., Wang, W.L., Kaxiras, E., Vlassak, J.J., and Suo, Z.: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 159, A238A243 (2012).CrossRefGoogle Scholar
Huang, S., Fan, F., Li, J., Zhang, S., and Zhu, T.: Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater. 61, 43544364 (2013).CrossRefGoogle Scholar
Chen, L., Fan, F., Hong, L., Chen, J., Ji, Y.Z., Zhang, S.L., Zhu, T., and Chen, L.Q.: A phase-field model coupled with large elasto-plastic deformation: Application to lithiated silicon electrodes. J. Electrochem. Soc. 161, F3164F3172 (2014).CrossRefGoogle Scholar
Zuo, P. and Zhao, Y-P.: Phase field modeling of lithium diffusion, finite deformation, stress evolution and crack propagation in lithium ion battery. Extreme Mech. Lett. 9, 467479 (2016).CrossRefGoogle Scholar
Yang, H., Fan, F., Liang, W., Guo, X., Zhu, T., and Zhang, S.: A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids 70, 349361 (2014).CrossRefGoogle Scholar
Lee, S.W., Lee, H.W., Ryu, I., Nix, W.D., Gao, H., and Cui, Y.: Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 6, 7533 (2015).CrossRefGoogle ScholarPubMed
Tippabhotla, S.K., Radchenko, I., Stan, C.V., Tamura, N., and Budiman, A.S.: Enabling the study of stress states using in situ µSXRD in the silicon nanowire anode during electrochemical lithiation in a specially designed Li-ion battery test cell. Procedia Eng. 215, 263275 (2017).CrossRefGoogle Scholar
Ali, I., Tippabhotla, S.K., Radchenko, I., Al-Obeidi, A., Stan, C.V., Tamura, N., and Budiman, A.S.: Probing stress states in silicon nanowires during electrochemical lithiation using in situ synchrotron X-ray microdiffraction. Front. Energy Res. 6, 19 (2018).CrossRefGoogle Scholar
Budiman, A., Nix, W., Tamura, N., Valek, B., Gadre, K., Maiz, J., Spolenak, R., and Patel, J.: Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron X-ray microdiffraction. Appl. Phys. Lett. 88, 233515 (2006).CrossRefGoogle Scholar
Budiman, A., Hau-Riege, C., Baek, W., Lor, C., Huang, A., Kim, H., Neubauer, G., Pak, J., Besser, P., and Nix, W.: Electromigration-induced plastic deformation in Cu interconnects: Effects on current density exponent, n, and implications for EM reliability assessment. J. Electron. Mater. 39, 24832488 (2010).CrossRefGoogle Scholar
Budiman, A., Besser, P., Hau-Riege, C., Marathe, A., Joo, Y-C., Tamura, N., Patel, J., and Nix, W.: Electromigration-induced plasticity: Texture correlation and implications for reliability assessment. J. Electron. Mater. 38, 379391 (2009).CrossRefGoogle Scholar
Budiman, A., Shin, H-A-S., Kim, B-J., Hwang, S-H., Son, H-Y., Suh, M-S., Chung, Q-H., Byun, K-Y., Tamura, N., and Kunz, M.: Measurement of stresses in Cu and Si around through-silicon via by synchrotron X-ray microdiffraction for 3-dimensional integrated circuits. Microelectron. Reliab. 52, 530533 (2012).CrossRefGoogle Scholar
Kim, B-J., Kim, J-H., Hwang, S-H., Budiman, A.S., Son, H-Y., Byun, K-Y., Tamura, N., Kunz, M., Kim, D-I., and Joo, Y-C.: Microstructure evolution and defect formation in Cu through-silicon vias (TSVs) during thermal annealing. J. Electron. Mater. 41, 712719 (2012).Google Scholar
Radchenko, I., Tippabhotla, S., Tamura, N., and Budiman, A.: Probing phase transformations and microstructural evolutions at the small scales: Synchrotron X-ray microdiffraction for advanced applications in 3D IC (integrated circuits) and solar PV (photovoltaic) devices. J. Electron. Mater. 45, 62226232 (2016).CrossRefGoogle Scholar
Budiman, A.S., Lee, G., Burek, M.J., Jang, D., Han, S.M.J., Tamura, N., Kunz, M., Greer, J.R., and Tsui, T.Y.: Plasticity of indium nanostructures as revealed by synchrotron X-ray microdiffraction. Mater. Sci. Eng., A 538, 8997 (2012).CrossRefGoogle Scholar
Budiman, A.S., Han, S-M., Li, N., Wei, Q-M., Dickerson, P., Tamura, N., Kunz, M., and Misra, A.: Plasticity in the nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron Laue X-ray microdiffraction. J. Mater. Res. 27, 599611 (2012).CrossRefGoogle Scholar
Kim, Y., Budiman, A.S., Baldwin, J.K., Mara, N.A., Misra, A., and Han, S.M.: Microcompression study of Al–Nb nanoscale multilayers. J. Mater. Res. 27, 592598 (2012).CrossRefGoogle Scholar
Budiman, A., Narayanan, K.R., Li, N., Wang, J., Tamura, N., Kunz, M., and Misra, A.: Plasticity evolution in nanoscale Cu/Nb single-crystal multilayers as revealed by synchrotron X-ray microdiffraction. Mater. Sci. Eng., A 635, 612 (2015).CrossRefGoogle Scholar
Budiman, A.S., Illya, G., Handara, V., Caldwell, W.A., Bonelli, C., Kunz, M., Tamura, N., and Verstraeten, D.: Enabling thin silicon, technologies for next generation c-Si solar PV renewable energy systems using synchrotron X-ray microdiffraction as stress and crack mechanism probe. Sol. Energy Mater. Sol. Cells 130, 303308 (2014).CrossRefGoogle Scholar
Tippabhotla, S.K., Radchenko, I., Song, W., Illya, G., Handara, V., Kunz, M., Tamura, N., Tay, A.A., and Budiman, A.S.: From cells to laminate: Probing and modeling residual stress evolution in thin silicon photovoltaic modules using synchrotron X‐ray micro‐diffraction experiments and finite element simulations. Prog. Photovoltaics 25, 791809 (2017).CrossRefGoogle Scholar
Handara, V., Radchenko, I., Tippabhotla, S., Narayanan, K.R., Illya, G., Kunz, M., Tamura, N., and Budiman, A.: Probing stress and fracture mechanism in encapsulated thin silicon solar cells by synchrotron X-ray microdiffraction. Sol. Energy Mater. Sol. Cells 162, 3040 (2017).CrossRefGoogle Scholar
Kunz, M., Tamura, N., Chen, K., MacDowell, A.A., Celestre, R.S., Church, M.M., Fakra, S., Domning, E.E., Glossinger, J.M., and Kirschman, J.L.: A dedicated superbend X-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source. Rev. Sci. Instrum. 80, 035108 (2009).CrossRefGoogle ScholarPubMed
MacDowell, A., Celestre, R., Tamura, N., Spolenak, R., Valek, B., Brown, W., Bravman, J., Padmore, H., Batterman, B., and Patel, J.: Submicron X-ray diffraction. Nucl. Instrum. Methods Phys. Res., Sect. A 467, 936943 (2001).CrossRefGoogle Scholar
Chen, X., Dejoie, C., Jiang, T., Ku, C-S., and Tamura, N.: Quantitative microstructural imaging by scanning Laue X-ray micro-and nanodiffraction. MRS Bull. 41, 445453 (2016).CrossRefGoogle Scholar
Tamura, N.: XMAS: A versatile tool for analyzing synchrotron X-ray microdiffraction data. In Strain and Dislocation Gradients from Diffraction (Imperial College Press London, World Scientific Publishing, Singapore, 2014); pp. 125155.CrossRefGoogle Scholar