Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:00:09.811Z Has data issue: false hasContentIssue false

SrRuO3 thin films grown on MgO substrates at different oxygen partial pressures

Published online by Cambridge University Press:  08 January 2013

Bin Zou*
Affiliation:
Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
Peter K. Petrov
Affiliation:
Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
Neil McN. Alford
Affiliation:
Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
*
a)Address all correspondence to this author. e-mail: b.zou@imperial.ac.uk
Get access

Abstract

A comprehensive study of SrRuO3 thin films growth on (001) MgO substrates by pulsed laser deposition in a wide oxygen pressure range from 10 to 300 mTorr was carried out. The experimental results showed a correlation between the lattice constants, resistivity, and oxygen partial pressures used. Ru deficiency detected only in films deposited at lower oxygen pressures (<50 mTorr), resulted in an elongation of the in-plane and out-of-plane lattice constants and an increase in the film resistivity. When deposited with oxygen partial pressure of 50 mTorr, SrRuO3 films had lattice parameters matching those of bulk SrRuO3 material and exhibited room temperature resistivity of 320 μΩ·cm. The resistivity of SrRuO3/MgO films decreased with increasing oxygen partial pressure.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Singh, S.K., Lees, M.R., Singh, R.K., and Palmer, S.B.: Growth of SrRuO3 thin films on MgO substrates by pulsed laser ablation. J. Phys. D: Appl. Phys. 35, 22432246 (2002).CrossRefGoogle Scholar
Lee, H.N., Christen, H.M., Chisholm, M.F., Rouleau, C.M., and Lowndes, D.H.: Thermal stability of epitaxial SrRuO3 films as a function of oxygen pressure. Appl. Phys. Lett. 84(20), 41074109 (2004).CrossRefGoogle Scholar
Choi, M.R., Jo, W., Oh, Y.S., Kim, K.H., Kang, Y-M., Yoo, S.I., Moon, S.H., Ha, H.S., and Oh, S.S.: Structural and electrical properties of SrRuO3 thin films for buffer layers of coated conductors. Physica C 463465, 584588 (2007).CrossRefGoogle Scholar
Jia, Q.X., Wu, X.D., Foltyn, S.R., and Tiwari, P.: Structural and electrical properties of Ba0.5Sr0.5TiO3 thin films with conductive SrRuO3 bottom electrodes. Appl. Phys. Lett. 66, 21972199 (1995).CrossRefGoogle Scholar
Hiratani, M., Okazaki, C., and Takagi, K.: Interfacial reaction of SrRuO3 prepared directly on TiN. Jpn. J. Appl. Phys. 37, 938941 (1998).CrossRefGoogle Scholar
Lzuha, M., Abe, K., Koike, M., Takeno, S., and Fukushima, N.: Electrical properties and microstructures of Pt/Ba0.5Sr0.5TiO3/SrRuO3 capacitors. Appl. Phys. Lett. 70, 14051407 (1997).Google Scholar
Wu, X.D., Foltyn, S.R., Dye, R.C., Coulter, Y., and Muenchausen, R.E.: Properties of epitaxial SrRuO3 thin films. Appl. Phys. Lett. 62, 24342436 (1993).CrossRefGoogle Scholar
Yoo, Y.Z., Chmaissem, O., Kolesnik, S., Dabrowski, B., Maxwell, M., Kimball, C.W., McAnelly, L., Haji-Sheikh, M., and Genis, A.P.: Contribution of oxygen partial pressures investigated over a wide range to SrRuO3 thin-film properties in laser deposition processing. J. Appl. Phys. 97, 103525-1-6 (2005).CrossRefGoogle Scholar
Kennedy, B.J. and Hunter, B.A.: High-temperature phases of SrRuO3 . Phys. Rev. B 58, 653658 (1998).CrossRefGoogle Scholar
Choi, K.J., Baek, S.H., Jang, H.W., Belenky, L.J., Lyubchenko, M., and Eom, C-B.: Phase-transition temperature of strained single-crystal SrRuO3 thin films. Adv. Mater. 22(6), 759762 (2010).CrossRefGoogle ScholarPubMed
Zakharov, N.D., Satyalakshmi, K.M., Koren, G., and Hesse, D.: Substrate temperature dependence of structure and resistivity of SrRuO3 thin films grown by pulsed laser deposition on (100) SrTiO3 . J. Mater. Res. 14, 43854394 (1999).CrossRefGoogle Scholar
Gan, Q., Rao, R.A., and Eom, C.B.: Control of the growth and domain structure of epitaxial SrRuO3 thin films by vicinal (001) SrTiO3 substrates. Appl. Phys. Lett. 70(15), 19621964 (1997).CrossRefGoogle Scholar
Jiang, J.C., Tian, W., Pan, X.Q., Gan, Q., and Eom, C.B.: Domain structure of epitaxial SrRuO3 thin films on miscut (001) SrTiO3 substrates. Appl. Phys. Lett. 72(23), 29632965 (1998).CrossRefGoogle Scholar
Kim, S.S., Kang, T.S., and Je, J.H.: Structural evolution of epitaxial SrRuO3 thin film grown on SrTiO3 (001). J. Appl. Phys. 90(9), 44074410 (2001).CrossRefGoogle Scholar
Rijnders, G., Blank, D.H.A., Choi, J., and Eom, C-B.: Enhanced surface diffusion through termination conversion during epitaxial SrRuO3 growth. Appl. Phys. Lett. 84, 505507 (2004).CrossRefGoogle Scholar
Herranz, G., Sanchez, F., Fontcuberta, J., Garcia-Cuenca, M.V., Ferrater, C., Varela, M., Angelova, T., Cros, A., and Cantarero, A.: Domain structure of epitaxial SrRuO3 thin films. Phys. Rev. B 71, 174411-1-8 (2005).CrossRefGoogle Scholar
Koster, G., Klein, L., Siemons, W., Rijnders, G., Dodge, L.S., Eom, C-B., Blank, D.H.A., and Beasley, M.R.: Structure, physical properties, and applications of SrTuO3 thin films. Rev. Mod. Phys. 84, 253298 (2012).CrossRefGoogle Scholar
Jiang, J.C., Pan, X.Q., and Chen, C.L.: Microstructure of epitaxial SrRuO3 thin films on (001) SrTiO3 . Appl. Phys. Lett. 72, 909911 (1998).CrossRefGoogle Scholar
Chen, C.L., Cao, Y., Huang, Z.J., Jiang, Q.D., Zhang, Z., Sun, Y.Y., Kang, W.N., Dezaneti, L.M., Chu, W.K., and Chu, C.W.: Epitaxial SrRuO3 thin films on (001) SrTiO3 . Appl. Phys. Lett. 71(8), 10471049 (1997).CrossRefGoogle Scholar
Jia, Q.X., Chu, F., Adams, C.D., Wu, X.D., Hawley, M., Cho, J.H., Findikoglu, A.T., Foltyn, S.R., Smith, J.L., and Mitchell, T.E.: Characteristics of conductive SrRuO3 thin films with different microstructures. J. Mater. Res. 11, 22632268 (1996).CrossRefGoogle Scholar
Jia, Q.X., Foltyn, S.R., Hawley, M., and Wu, X.D.: Pulsed laser deposition of conductive SrRuO3 thin films. J. Vac. Sci. Technol., A 15, 10801083 (1997).CrossRefGoogle Scholar
Jiang, J.C. and Pan, X.Q.: Microstructure and growth mechanism of epitaxial SrRuO3 thin films on (001) LaAlO3 substrates. J. Appl. Phys. 89, 63656369 (2001).CrossRefGoogle Scholar
Ai, W.Y., Zhu, J., Zhang, Y., Li, Y.R., Liu, X.Z., Wei, X.H., Li, J.L., Zheng, L., Qin, W.F., and Liang, Z.: Microstructure of epitaxial SrRuO3 thin films on MgO substrates. Appl. Surf. Sci. 252, 83268330 (2006).CrossRefGoogle Scholar
Hiratani, M., Okazaki, C., Imagawa, K., and Takagi, K.: SrRuO3 thin films grown under reduced oxygen pressure. Jpn. J. Appl. Phys., Part 1 35, 62126216 (1996).CrossRefGoogle Scholar
Petrov, P.K., Sarma, K., and Alford, N.M.: Evaluation of residual stress in thin ferroelectric films using grazing incident x-ray diffraction. Integr. Ferroelectr. 63, 183189 (2004).CrossRefGoogle Scholar