Published online by Cambridge University Press: 31 January 2011
High-quality SrAl12O19:Pr3+ nanodisks and nanoplates were fabricated via a new processing technique based on a modified polymer steric entrapment method. Serious agglomeration and large particle size distribution of final products, which usually occurred in the conventional method, were eliminated completely. The effects of new synthetic processes on the morphology, crystallization, and yield of products and the relevant mechanisms were discussed. As far as we know, SrAl12O19:Pr3+ nanodisks with mean diameter ∼60 nm and thickness between 5 and 10 nm were successfully synthesized for the first time by this low-cost technique. The new synthetic method may provide a general route to synthesize other refractory mixed-oxide nanocrystals. Photon cascade emission involving transitions 1S0–1I6 followed by 3P0–3H4 in SrAl12O19:1% Pr3+ nanodisks was investigated. Size-effect-induced blue shift of the 4f5d states of Pr3+ was observed in SrAl12O19:1% Pr3+ nanodisks, in which the quantum efficiency was preserved, as in the bulk counterparts.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.