Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T11:43:07.611Z Has data issue: false hasContentIssue false

Spinning yarn from long carbon nanotube arrays

Published online by Cambridge University Press:  28 February 2011

Chaminda Jayasinghe
Affiliation:
Department of Chemical and Material Science Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
Supriya Chakrabarti
Affiliation:
Department of Chemical and Material Science Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
Mark J. Schulz
Affiliation:
Department of Mechanical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0072
Vesselin Shanov*
Affiliation:
Department of Chemical and Material Science Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
*
a)Address all correspondence to this author. e-mail: Vesselin.Shanov@uc.edu
Get access

Abstract

Spinning carbon nanotube (CNT) thread directly from 4–6 mm long aligned carbon nanotube arrays is reported here. The strength of carbon nanotube thread was improved by optimizing the chemical vapor deposition parameters for growing long aligned carbon nanotube arrays. The morphological and structural characterization of CNT arrays and threads were studied by Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. After optimization of growth parameters threads were spun with diameters between 10 and 70 μm. We have achieved thread strength of about 280 MPa.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991).CrossRefGoogle Scholar
2.Li, X., Cao, A., Jung, Y.J., Vajtai, R., and Ajayan, P.M.: Bottom-up growth of carbon nanotube multilayers: Unprecedented growth. Nano Lett. 5, 1997 (2005).CrossRefGoogle ScholarPubMed
3.Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., and Provencio, P.N.: Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391), 1105 (1998).CrossRefGoogle Scholar
4.Motta, M., Li, Y., Kinloch, I., and Windle, A.: Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett. 5(8), 1529 (2005).CrossRefGoogle ScholarPubMed
5.Zhang, M., Fang, S., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Atkinson, K.R., and Baughman, R.H.: Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215 (2005).Google ScholarPubMed
6.Yu, M.-F., Files, B.S., Arepalli, S., and Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552 (2000).CrossRefGoogle ScholarPubMed
7.Atkinson, K.R., Hawkins, S.C., Huynh, C., Skourtis, C., Dai, J., Zhang, M., Fang, S., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., and Baughman, R.H.: Multifunctional carbon nanotube yarns and transparent sheets: Fabrication, properties, and applications. Phys. B: Phys. Condens. Matter 394(2), 339 (2007).Google Scholar
8.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G.: Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701 (1996).CrossRefGoogle ScholarPubMed
9.Xiong, G-Y., Wang, D.Z., and Ren, Z.F.: Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44(5), 969 (2006).CrossRefGoogle Scholar
10.Christen, H.M., Puretzky, A.A., Cui, H., Belay, K., Fleming, P.H., Geohegan, D.B., and Lowndes, D.H.: Rapid growth of long, vertically aligned carbon nanotubes through efficient catalyst optimization using metal film gradients. Nano Lett. 4(10), 1939 (2004).CrossRefGoogle Scholar
11.Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362 (2004).CrossRefGoogle ScholarPubMed
12.Chakrabarti, S., Yoshikawa, Y., Pan, L., and Nakayama, Y.: Number of walls controlled synthesis of millimeter-long vertically aligned brushlike carbon nanotubes. Jpn. J. Appl. Phys. 45, L720 (2006).CrossRefGoogle Scholar
13.Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., and Poulin, P.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331 (2000).CrossRefGoogle ScholarPubMed
14.Dalton, A.B., Collins, S., Munoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P., Coleman, J.N., Kim, B.G., and Baughman, R.H.: Super-tough carbon-nanotube fibres. Nature 423, 703 (2003).CrossRefGoogle ScholarPubMed
15.Miaudet, P., Badaire, S., Maugey, M., Derre, A., Pichot, V., Launois, P., Poulin, P., and Zakri, C.: Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett. 5, 2212 (2005).CrossRefGoogle ScholarPubMed
16.Zhu, H.W., Xu, C.L., Wu, D.H., Wei, B.Q., Vajtai, R., and Ajayan, P.M.: Directly synthesis of long nanotube strands. Science 296, 884 (2002).CrossRefGoogle Scholar
17.Li, Y., Kinloch, I.A., and Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304, 276 (2004).CrossRefGoogle ScholarPubMed
18.Zhang, X., Jiang, K., Feng, C., Liu, P., Zhang, L., Kong, J., Zhang, T., Li, Q., and Fan, S.: Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 18, 1505 (2006).CrossRefGoogle Scholar
19.Zhang, M., Atkinson, K.R., and Baughman, R.H.: Multifunctional carbon nanotubes yarns by downsizing an ancient technology. Science 306, 1358 (2004).CrossRefGoogle ScholarPubMed
20.Zhang, S., Zhu, L., Minus, M., Chae, H., Jagannathan, S., Wong, C., Kowalik, J., Roberson, L., and Kumar, S.: Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition. J. Mater. Sci. 43, 4356 (2008).CrossRefGoogle Scholar
21.Bronikowski, M.J.: CVD growth of carbon nanotube bundle arrays. Carbon 44, 2822 (2006).CrossRefGoogle Scholar
22.Zheng, L., Zhang, X., Li, Q., Chikkannanavar, B.S., Li, Y., Zhao, Y., Liao, X., Jia, Q., Doorn, K.S., Peterson, E.D., and Zhu, Y.: Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 19, 2567 (2007).CrossRefGoogle Scholar