Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T10:59:36.008Z Has data issue: false hasContentIssue false

Spin scattering effect on thermal transport and nonadiabatic small polaron hopping conduction in layered cobaltite thin film

Published online by Cambridge University Press:  11 February 2011

Shengli Huang*
Affiliation:
Department of Physics, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China; and China-Australia Joint Laboratory for Functional Nanomaterials, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
Xianfang Zhu
Affiliation:
Department of Physics, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China; and China-Australia Joint Laboratory for Functional Nanomaterials, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
Keqing Ruan
Affiliation:
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Liezhao Cao
Affiliation:
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: huangsl@xmu.edu.cn
Get access

Abstract

Transport properties in the a-b plane of Nd0.75Sr1.25CoO4 thin film as fabricated via a pulsed laser deposition technique have been investigated by means of measurements of resistivity and thermopower, respectively, in the temperature ranges of 76-300 and 80-310 K. The thermopower of the specimen revealed a mechanism of spin-dependent scattering of the charge carriers where its conduction could be well interpreted by the small polaron hopping conduction in the nonadiabatic regime at high temperatures and the two-dimensional variable range hopping of small polarons at low temperatures. Possible mechanisms for the polaronic conduction were also discussed in the article where several physical parameters of the specimen were determined using a small polaron hopping model and a better understanding of the strongly correlated electron system was achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chichev, A.V., Dlouha, M., Vratislav, S., Knizek, K., Hejtmanek, J., Marysko, M., Veverka, M., Jirak, Z., Golosova, N.O., Kozlenko, D.P., and Savenko, B.N.: Structural, magnetic, and transport properties of the single-layered perovskites La2−xSrxCoO4 (x = 1.0–1.4). Phys. Rev. B 74, 134414 (2006).CrossRefGoogle Scholar
2.Park, J., Lee, S., Park, J-G., Swainson, I.P., Moritomo, Y., and Ri, H-C.: Spin-glass state of (Nd, La)0.5Sr1.5MnO4. Phys. Rev. B 62, 13848 (2000).CrossRefGoogle Scholar
3.Wu, G.Q. and Neumeier, J.J.: Small polaron transport and pressure dependence of the electrical resistivity of La2-xSrxNiO4 (0 < x < 1.2). Phys. Rev. B 67, 125116 (2003).CrossRefGoogle Scholar
4.Huang, S.L., Ruan, K.Q., Lv, Z.M., Zhuang, L.H., Wei, P., Wu, H.Y., Li, M., Zhang, J.L., Chai, Y.S., Yang, H.S., Cao, L.Z., and Li, X.G.: Magnetic and transport properties in layered Nd1−xSr1+xCoO4. Phys. Rev. B 73, 094431 (2006).CrossRefGoogle Scholar
5.Huang, S.L., Ruan, K.Q., Lv, Z.M., Wu, H.Y., Pang, Z.Q., Cao, L.Z., and Li, X.G.: Evidence for spin-glass states and Griffiths singularities in Nd0.75Sr1.25CoO4. J. Phys. Condens. Matter 18, 7135 (2006).CrossRefGoogle Scholar
6.Matsuno, J., Okimoto, Y., Fang, Z., Yu, X.Z., Matsui, Y., Nagaosa, N., Kawasaki, M., and Tokura, Y.: Studying quantum spin systems through entanglement estimators. Phys. Rev. Lett. 93, 167203 (2004).Google Scholar
7.Wang, X.L. and Takayama-Muromachi, E.: Magnetic and transport properties of the layered perovskite system Sr2− yYyCoO4 (0 ≤ y ≤ 1). Phys. Rev. B 72, 064401 (2005).CrossRefGoogle Scholar
8.Gratz, E.: Transport phenomena in spin fluctuations systems. Physica B 237238, 470 (1997).CrossRefGoogle Scholar
9.Sanchez-Andujar, M. and Senaris-Rodriguez, M.A.: Synthesis, structure and microstructure of the layered compounds Ln1−xSr1+xCoO4 (Ln: La, Nd and Gd). Solid State Sci. 6, 21 (2004).CrossRefGoogle Scholar
10.Goodenough, J.B., Zhou, J-S., and Chan, J.: Copper oxide superconductors: A distinguishable thermodynamic state. Phys. Rev. B 47, 5275 (1993).CrossRefGoogle ScholarPubMed
11.Nakamae, S., Colson, D., Forget, A., Legros, I., Marucco, J-F., Ayache, C., and Ocio, M.: Thermoelectric power of hole-doped manganites: La2−2xSr1+2xMn2O7 (0.3 < x < 0.5). Phys. Rev. B 63, 092407 (2001).CrossRefGoogle Scholar
12.Mott, N.F.: Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1, 1 (1968).CrossRefGoogle Scholar
13.Austin, I.G. and Mott, N.F.: Polarons in crystalline and non-crystalline materials. Adv. Phys. 18, 41 (1969).CrossRefGoogle Scholar
14.Banerjee, A., Pal, S., Rozenberg, E., and Chaudhuri, B.K.: Adiabatic and non-adiabatic small-polaron hopping conduction in La1−x Pbx MnO3+δ (0.0 ≤ x ≤ 0.5)-type oxides above the metal–semiconductor transition. J. Phys. Condens. Matter 13, 9489 (2001).CrossRefGoogle Scholar
15.Mollah, S., Khan, Z.A., Shukla, D.K., Arshad, M., Kumar, R., and Das, A.: Adiabatic small polaron-hopping conduction in Ln0.85Ca0.15MnO3 (Ln = Nd, Pr and Sm) perovskites. J. Phys. Chem. Solids 69, 1023 (2008).CrossRefGoogle Scholar
16.Lago, J., Battle, P.D., Rosseinsky, M.J., Coldea, A.I., and Singleton, J.: Non-adiabatic small polaron hopping in the n = 3 Ruddlesden–Popper compound Ca4Mn3O10. J. Phys. Condens. Matter 15, 6817 (2003).CrossRefGoogle Scholar
17.Nagaraja, N., Sankarappa, T., and Prashant Kumar, M.: Electrical conductivity studies in single and mixed alkali doped cobalt–borate glasses. J. Non-Cryst. Solids 354, 1503 (2008).CrossRefGoogle Scholar
18.Mott, N.F. and Davis, E.A.: Electronic Process in Non-Crystalline Materials(Clarendon Press, Oxford, UK, 1979).Google Scholar
19.Yildiz, A., Lisesivdin, S.B., Kasap, M., and Mardare, D.: Non-adiabatic small polaron hopping conduction in Nb-doped TiO2 thin film. Physica B 404, 1423 (2009).CrossRefGoogle Scholar
20.Holstein, T.: Studies of polaron motion: Part II. The “small” polaron. Ann. Phys. 8, 343 (1959).CrossRefGoogle Scholar
21.Emin, D. and Holstein, T.: Studies of small-polaron motion: IV. Adiabatic theory of the Hall effect. Ann. Phys. 53, 439 (1969).CrossRefGoogle Scholar
22.Heikes, R.R.: Thermoelectricity (Wiley-Interscience Press, New York, 1961).Google Scholar
23.Pal, M., Hirota, K., Tsujigami, Y., and Sakata, H.: Structural and electrical properties of MoO3–TeO2 glasses. J. Phys. D: Appl. Phys. 34, 459 (2001).CrossRefGoogle Scholar
24.Friedman, L. and Holstein, T.: Studies of polaron motion: Part III: The Hall mobility of the small polaron. Ann. Phys. 21, 494 (1963).CrossRefGoogle Scholar
25.Millis, A.J.: Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147 (1998).CrossRefGoogle Scholar