Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:02:08.088Z Has data issue: false hasContentIssue false

Soluble silicon nanoparticles–polyaniline capsules for biosensing and imaging

Published online by Cambridge University Press:  19 October 2012

Noha Elhalawany
Affiliation:
Polymers and Pigments Department, Chemical Industrial Division, National Research Center, Cairo 12311, Egypt
Yulia Maximenko
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Zain Yamani
Affiliation:
Center of Excellence for Nanotechnology, KFUPM, Dhahran 31261, Saudi Arabia
Siu-Tung Yau
Affiliation:
Department of Electrical Engineering, Cleveland State University, Cleveland, Ohio 44115
Munir H. Nayfeh*
Affiliation:
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
*
a)Address all correspondence to this author. e-mail: m-nayfeh@illinois.edu
Get access

Abstract

We used miniemulsion to synthesize novel water-soluble dispersion of nanocapsules with a polyaniline (PANI) shell and luminescent ultrasmall Si nanoparticle core with diameters of 50–300 nm. The capsules are functionalized with aromatic sulfonic acid. The capsules may be reconstituted in thin films or structured surfaces. The stability of the luminescence and dispersion of the capsules is studied under a wide range of pH conditions. The multiplicity of nanoparticles in the core provides highly amplified and reproducible signal for luminescence-based imaging using standard fluorescence microscopy, while the PANI shell allows a variety of routes for functionalization as well as electrical interrogation, which enables a wide range of biosensing/imaging applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

He, Y., Fan, C., and Lee, S-T.: Silicon nanostructures for bioapplications. Nanotoday 5, 282 (2010).CrossRefGoogle Scholar
Erogbogbo, F., Yong, K-T., Roy, I., Xu, G., Prasad, P.N., and Swihart, M.T.: Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873 (2008).CrossRefGoogle ScholarPubMed
Nayfeh, M.H. and Mitas, L.: Silicon nanoparticles: New photonic and electronic material at the transition between solid and molecule, in Nanosilicon, edited by Kumar, V. (Elsevier, Amsterdam, The Netherlands, 2008); pp. 178.Google Scholar
English, D.S., Pell, L.E., Yu, Z., Barbara, P.F., and Korgel, B.A.: Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett. 2, 681 (2002).CrossRefGoogle Scholar
Nayfeh, M., Rogozhina, E., and Mitas, L.: Silicon nanoparticles: Next generation of ultrasensitive fluorescent markers, in Synthesis, Functionalization, and Surface Treatment of Nanoparticles, edited by Baratron, M.-I. (American Scientific Publishers, Stevenson Ranch, CA, 2002); pp. 159.Google Scholar
Belomoin, G., Therrien, J., Smith, A., Rao, S., Chaieb, S., and Nayfeh, M.H.: Observation of a magic discrete family of ultrabright Si nanoparticles. Appl. Phys. Lett. 80, 841 (2002).CrossRefGoogle Scholar
Nielsen, D., Abuhassan, L., Alchihabi, M., Al-Muhanna, A., Host, J., and Nayfeh, M.H.: Current-less anodization of intrinsic silicon powder grains: Formation of fluorescent Si nanoparticles. J. Appl. Phys. 101, 114302 (2007).CrossRefGoogle Scholar
Ackakir, O., Therrien, J., Belomoin, G., Barry, N., Muller, J., Gratton, E., and Nayfeh, M.H.: Detection of luminescent single ultrasmall silicon nanoparticle using fluctuation spectroscopy. Appl. Phys. Lett. 76, 1857 (2000).CrossRefGoogle Scholar
Nayfeh, M.H., Therrien, J., Belomoin, G., Akcakir, O., Barry, N., and Gratton, E.: Stimulated blue emission and second harmonic generation from films of ultrasmall Si nanoparticles, in Microcrystalline and Nanocrystalline Semiconductors—2000, edited by Fauchet, P.M., Buriak, J.M., Canham, L.T., Koshida, N., and White, B.E. Jr. (Mater. Res. Soc. Symp. Proc. 638, Warrendale, PA, 2001); p. F9.5.Google Scholar
Nayfeh, M., Akcakir, O., Belomoin, G., Barry, N., Therrien, J., and Gratton, E.: Second harmonic generation in microcrystallite films of ultrasmall Si nanoparticles. Appl. Phys. Lett. 77, 4086 (2000).CrossRefGoogle Scholar
Wang, G., Mantey, K., Nayfeh, M.H., and Yau, S-T.: Enhanced amperometric detection of glucose using Si-29 particles. Appl. Phys. Lett. 89, 243901 (2006).CrossRefGoogle Scholar
Wang, G., Yau, S-T., Mantey, K., and Nayfeh, M.H.: Fluorescent Si nanoparticle-based electrode for sensing biomedical substances. Opt. Commun. 281, 1765 (2008).CrossRefGoogle Scholar
Liu, Q., Nayfeh, M.H., and Yau, S-T.: A silicon nanoparticle-based polymeric nano-composite material for glucose sensing. J. Electroanal. Chem. 657, 172 (2011).CrossRefGoogle Scholar
Mantey, K., Kwit, M., Nayfeh, M.H., Kumar, A., Stephenson, L.D., and Nelson, A.J.: Measurement of the photostability of silicon nanoparticles under UVA and near infrared irradiation. J. Appl. Phys. 107, 064316 (2010).CrossRefGoogle Scholar
Mantey, K., Nayfeh, M.H., Al-Hreish, B., Boparai, J., Kumar, A., Stephenson, L.D., Nelson, A.J., Alrokayan, S.A., and Abu-Salah, K.M.: Silicon nanoparticle-functionalized fiberglass pads for sampling. J. Appl. Phys. 109, 064321 (2011).CrossRefGoogle Scholar
Rogozhina, E., Belomoin, G., Smith, A., Abuhassan, L., Barry, N., Akcakir, O., Braun, P.V., and Nayfeh, M.H.: Si-N linkage in ultrabright, ultrasmall Si nanoparticles. Appl. Phys. Lett. 78, 3711 (2001).CrossRefGoogle Scholar
Belomoin, G., Rogozhina, E., Therrien, J., Braun, P.V., Abuhassan, L., Nayfeh, M.H., Wagner, L., and Mitas, L.: Effect of surface termination on the band gap of ultrabright Si29 nanoparticles: Experiments and computational models. Phys. Rev. B 65, 193406 (2002).CrossRefGoogle Scholar
Heeger, A.J.: Semiconducting metallic polymers: Fourth generation polymeric materials. Angew. Chem. Int. Ed. 40, 2591 (2001).3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Green, A.G. and Woodhead, A.E.: Aniline black and allied compounds. J. Chem. Soc. 97, 2388 (1910).CrossRefGoogle Scholar
Syed, A.A. and Dinesan, M.K.: Polyaniline-A novel polymeric material. Talanta 38, 815 (1991).CrossRefGoogle ScholarPubMed
Banerjee, P.: Carboxymethylcellulose stabilized polyaniline dispersions and conducting copolymer latex composites. Eur. Polym. J. 34, 841 (1998).Google Scholar
Chattopadhyay, D. and Mandal, B.M.: Methyl cellulose stabilized polyaniline dispersions. Langmuir 12, 1585 (1996).CrossRefGoogle Scholar
Stejskal, J. and Kratochvil, P.: Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers. Langmuir 12, 3389 (1996).CrossRefGoogle Scholar
Banerjee, P., Bhattacharyya, S.N., and Mandal, B.M.: Poly(vinyl methyl-ether) stabilized colloidal polyaniline dispersions. Langmuir 11, 2414 (1995).CrossRefGoogle Scholar
Cooper, E.C. and Vincent, B.: Electrically conducting organic films and beads based on conducting latex particles. J. Phys. D: Appl. Phys. 22, 1580 (1989).CrossRefGoogle Scholar
Armes, S.P., Aldissi, M., Agnew, S., and Gottesfeld, S.: Aqueous colloidal dispersions of polyaniline formed by using poly(vinylpyridine)-based steric stabilizers. Langmuir 6, 1745 (1990).CrossRefGoogle Scholar
Lee, S.H., Lee, D.H., Lee, K., and Lee, C.W.: High-performance polyaniline prepared via polymerization in a self-stabilized dispersion. Adv. Funct. Mater. 15, 1495 (2005).CrossRefGoogle Scholar