Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:03:48.136Z Has data issue: false hasContentIssue false

Solidification of undercooled molten spinodal

Published online by Cambridge University Press:  31 January 2011

C. W. Yuen
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
H. W. Kui
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong
Get access

Abstract

When molten Pd40.5Ni40.5P19 is undercooled way below its liquidus Tl, liquid state spinodal decomposition is observed. Crystallization of this system is particularly interesting because it has plenty of interfaces. The microstructure of an as-crystallized specimen can be divided into four regions, namely, A: random spinodal; B: aligned and elongated spinodal; C: coarsened spinodal and island structure; and D: rod structure and ternary eutectics. The origin of these different microstructures is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lee, K. L. and Kui, H. W., J. Mater. Res. (in press).Google Scholar
2.Yuen, C. W., Lee, K. L., and Kui, H. W., J. Mater. Res. 12, 314 (1997).CrossRefGoogle Scholar
3.Yuen, C. W and Kui, H. W., unpublished.Google Scholar
4.Elder, S. P and Abbaschian, G. J., in Principles of Solidification and Materials Processing, Vol. 1, edited by Trivedi, R., Sekhar, J. A., and Mazumdar, J. (Trans. Tech. Publications, Switzerland, 1990), p. 299.Google Scholar
5.Chan, C. K., Perrot, F., and Beysens, D., Phys. Rev. Lett. 61, 412 (1988).CrossRefGoogle Scholar
6.Chan, C. K., Perrot, F., and Beysens, D., Phys. Rev. A 43, 1826 (1991).CrossRefGoogle Scholar
7.Takebe, T, Fujioka, K., Sawaoka, R., and Hashimoto, T., J. Chem. Phys. 93, 5271 (1990).CrossRefGoogle Scholar
8.Rothman, D. H., Phys. Rev. Lett. 65, 3305 (1990).CrossRefGoogle Scholar
9.Hashimoto, T., Matsuzaka, K., and Moses, E., Phys. Rev. Lett. 74, 126 (1994).CrossRefGoogle Scholar
10.Chalmers, B., in Principles of Solidification (Wiley, New York, 1964), p. 183.Google Scholar
11.Lau, C. F and Kui, H. W., J. Appl. Phys. 67, 3181 (1990).CrossRefGoogle Scholar
12.Chen, H. S., Mater. Sci. Eng. 23, 151 (1975).CrossRefGoogle Scholar
13.IIISeward, T. P., Uhlmann, D. R., and Turnbull, D., J. Am. Ceram. Soc. 51, 278 (1967).CrossRefGoogle Scholar
14.Chow, K. C., Wong, S., and Kui, H. W., J. Appl. Phys. 74, 5410 (1993).CrossRefGoogle Scholar
15.Kui, H. W., Greer, A. L., and Kui, H. W., Appl. Phys. Lett. 45, 615 (1984).CrossRefGoogle Scholar
16.Turnbull, D., Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
17.Spaepen, F. and Turnbull, D., in Laser Annealing of Semiconductors, edited by Poate, J. M. and Mayer, J. W.Academic Press, New York, 1982, p. 15.CrossRefGoogle Scholar