Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:11:40.891Z Has data issue: false hasContentIssue false

Size effects of nanoindentation creep

Published online by Cambridge University Press:  03 March 2011

H. Li
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
A.H.W. Ngan
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
Get access

Abstract

The size effects on indentation creep were studied on single-crystal Ni3Al, polycrystalline pure Al, and fused quartz samples at room temperature. The stress exponents were measured by monitoring the displacement during constant indentation loads after correction for thermal drift effects. The stress exponents were found to exhibit a very strong size effect. In the two metals Al and Ni3Al, the stress exponent for very small indents is very small, and for Al, this even approaches unity, suggesting that linear diffusional flow may be the controlling mechanism. The stress exponents in these two metals rise rapidly to over 100 as the indent size gets larger, indicating a rapid change of the dominating mechanism to climb-controlled to eventually glide-controlled events. In fused quartz, the stress exponent also exhibits a sharply rising trend as the indent size increases. The stress exponent is also close to unity at the smallest indents studied, and it rises rapidly to a few tens as the indent size gets larger.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Robertson, C.F. and Fivel, M.C.: J. Mater. Res. 14, 2251 (1999).CrossRefGoogle Scholar
2Chiu, Y.L. and Ngan, A.H.W.: Acta Mater. 50, 2677 (2002).CrossRefGoogle Scholar
3Mayo, M.J. and Nix, W.D.: Acta Metall. 36, 2183 (1988).CrossRefGoogle Scholar
4LaFontaine, W.R., Yost, B., Black, R.D. and Li, C.Y.: J. Mater. Res. 5, 2100 (1990).CrossRefGoogle Scholar
5Baker, S.P.Barbee, T.W. Jr., and Nix, W.D., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239 Pittsburgh, PA, 1992), p. 319.Google Scholar
6Lucas, B.N. and Oliver, W.C. in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239 Pittsburgh, PA, 1992), p. 337.Google Scholar
7O’Connor, K.M. and Cleveland, P.A. in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P.H., Weihs, T.P., Sanchez, J. Jr., and Borgesen, P. (Mater. Res. Soc. Symp. Proc. 308 Pittsburgh, PA, 1993), p. 495.Google Scholar
8Raman, V. and Berriche, R.: J. Mater. Res. 7, 627 (1992).CrossRefGoogle Scholar
9Lucas, B.N. and Oliver, W.C.: Metall. Mater. Trans. 30A, 601 (1999).CrossRefGoogle Scholar
10Feng, G. and Ngan, A.H.W.: Scr. Mater. 45, 971 (2001).CrossRefGoogle Scholar
11Feng, G. and Ngan, A.H.W.: J. Mater. Res. 17, 660 (2002).CrossRefGoogle Scholar
12Ngan, A.H.W. and Tang, B.: J. Mater. Res. 17, 2604 (2002).CrossRefGoogle Scholar
13Tang, B. and Ngan, A.H.W.: J. Mater. Res. 18, 1141 (2003).CrossRefGoogle Scholar
14Syed, S.A. and Pethica, J.B.: Philos. Mag. A 76, 1105 (1997).CrossRefGoogle Scholar
15Li, W.B., Henshall, H.L., Hooper, R.M. and Easterling, K.E.: Acta Metall. Mater. 39, 3099 (1991).CrossRefGoogle Scholar
16Oliver, W.C. and Pharr, G.M.: J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
17Sargent, P.M.: Use of the Indentation Size Effect on Microhardness for Materials Characterization, edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, PA, STP 889, pp. 225241.Google Scholar
18Nix, W.D. and Gao, H.: Journal of the Mechanics and Physics of Solids 46, 411 (1998).CrossRefGoogle Scholar
19Soifer, YA.M. and A.V.A.L.R., : Mater. Lett. 56, 127 (2002).CrossRefGoogle Scholar
20Elmustafa, A.A. and Stone, D.S.: Acta Mater. 50, 3641 (2002).CrossRefGoogle Scholar
21Poirier, J.P.: Creep of Crystals—High Temperature Deformation Processes in Metals, Ceramics and Minerals (Cambridge University Press, Cambridge, U.K., 1985).CrossRefGoogle Scholar
22Bower, A.F., Fleck, N.A., Needleman, A. and Ogbonna, N.: Proc. R. Soc. London, Ser. A 441, 97 (1993).Google Scholar
23Sakai, M.: Philos. Mag. A 82, 1841 (2002).CrossRefGoogle Scholar
24Sakai, M. and Shimizu, S.: J. Am. Ceram. Soc. 85, 1210 (2002).CrossRefGoogle Scholar
25Weihs, T.P. and Pethica, J.B. in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239 Pittsburgh, PA, 1992), p. 319.Google Scholar
26Sneddon, I.N.: Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
27Chiu, Y.L. and Ngan, A.H.W.: Acta Mater. 50, 1599 (2002).CrossRefGoogle Scholar
28Feng, G., M.Phil. Thesis, University of Hong Kong, Hong Kong, Japan, (2001).Google Scholar
29Li, W.B. and Warren, R.: Acta Metall. Mater. 41, 3065 (1993).CrossRefGoogle Scholar
30Spingarn, J.R., Barnett, D.M. and Nix, W.D.: Acta Metall. 27, 1549 (1979).CrossRefGoogle Scholar
31Ballufi, R.W.: Phys. Status Solidi 42, 11 (1970).CrossRefGoogle Scholar
32Hirsch, P.B.: Prog. Mater. Sci. 36, 63 (1992).CrossRefGoogle Scholar
33Argon, A.S.: Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar