Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T14:52:37.044Z Has data issue: false hasContentIssue false

Size effects in indentation of hydrated biological tissues

Published online by Cambridge University Press:  26 October 2011

Michelle L. Oyen*
Affiliation:
Department of Cambridge University Engineering, Cambridge CB2 1PZ, United Kingdom
Tamaryn A.V. Shean
Affiliation:
Department of Cambridge University Engineering, Cambridge CB2 1PZ, United Kingdom
Daniel G.T. Strange
Affiliation:
Department of Cambridge University Engineering, Cambridge CB2 1PZ, United Kingdom
Matteo Galli
Affiliation:
Department of Cambridge University Engineering, Cambridge CB2 1PZ, United Kingdom; and Laboratoire de Mécanique Appliqée et d’Analyse de Fiabilité, École Polytechnique Fédérale Lausanne, Lausanne 1015, Switzerland
*
a)Address all correspondence to this author. e-mail: mlo29@cam.ac.uk
Get access

Abstract

Fluid flow in biological tissues is important in both mechanical and biological contexts. Given the hierarchical nature of tissues, there are varying length scales at which time-dependent mechanical behavior due to fluid flow may be exhibited. Here, spherical nanoindentation and microindentation testings are used for the characterization of length scale effects in the mechanical response of hydrated tissues. Although elastic properties were consistent across length scales, there was a substantial difference between the time-dependent mechanical responses for large and small contact radii in the same tissue specimens. This difference was far more obvious when poroelastic analysis was used instead of viscoelastic analysis. Overall, indentation testing is a fast and robust technique for characterizing the hierarchical structure of biological materials from nanometer to micrometer length scales and is capable of making quantitative material property measurements to do with fluid flow.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lakes, R.S.: Materials with structural hierarchy. Nature 361, 511 (1993).CrossRefGoogle Scholar
2.Weiner, S. and Wagner, H.D.: The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271 (1998).CrossRefGoogle Scholar
3.Anderson, E.J., Kreuzer, S.M., Small, O., and Knothe Tate, M.L.: Pairing computational and scaled physical models to determine permeability as a measure of cellular communication in micro- and nano-scale pericellular spaces. Microfluid. Nanofluid. 4, 193 (2008).CrossRefGoogle Scholar
4.Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217 (1999).CrossRefGoogle ScholarPubMed
5.Ko, C-C., Oyen, M.L., Fallgatter, A.M., Kim, J-H., Douglas, W.H., Fricton, J., and Hu, W-S.: Mechanical properties and cytocompatibility of biomimetic hydroxyapatite-gelatin nano-composites. J. Mater. Res. 21, 3090 (2006).CrossRefGoogle Scholar
6.Oyen, M.L.: The materials science of bone. Lessons from nature for biomimetic materials synthesis. MRS Bull. 33, 49 (2008).Google Scholar
7.Sasaki, N. and Enyo, A.: Viscoelastic properties of bone as a function of water content. J. Biomech. 28, 809 (1995).CrossRefGoogle ScholarPubMed
8.Wang, H.W.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology (Princeton University Press, Princeton, NJ, 2000).Google Scholar
9.Ebenstein, D. and Pruitt, L.: Nanoindentation of biological materials. Nano Today 1, 26 (2006).CrossRefGoogle Scholar
10.Oyen, M.L., editor: Handbook of Nanoindentation: With Biological Applications (Pan Stanford Press/World Scientific Publishing, Singapore, 2011).Google Scholar
11.Cuy, J.L., Mann, A.B., Livi, K.J., Teaford, M.F., and Weihs, T.P.: Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 47, 281 (2002).CrossRefGoogle ScholarPubMed
12.Rho, J-Y., Roy, M.E., Tsui, T.Y. and Pharr, G.M.: Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J. Biomed. Mater. Res. 45, 48 (1999).3.0.CO;2-5>CrossRefGoogle ScholarPubMed
13.Rho, J-Y., Tsui, T.Y., and Pharr, G.M.: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18, 1325 (1997).CrossRefGoogle ScholarPubMed
14.Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E. and Goldstein, S.A.: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32, 1005 (1999).CrossRefGoogle ScholarPubMed
15.Bembey, A.K., Bushby, A.J., Boyde, A., Ferguson, V.L., and Oyen, M.L.: Hydration effects on the micro-mechanical properties of bone. J. Mater. Res. 21, 1962 (2006).Google Scholar
16.Bushby, A.J., Ferguson, V.L., and Boyde, A.: Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J. Mater. Res. 19, 249 (2004).CrossRefGoogle Scholar
17.Miller, G.J. and Morgan, E.F.: Use of microindentation to characterize the mechanical properties of articular cartilage: Comparison of biphasic material properties across length-scales. Osteoarthritis Cartilage 18, 1051 (2010).CrossRefGoogle ScholarPubMed
18.Franke, O., Durst, K., Maier, V., Göken, M., Birkholz, T., Schneider, H., Hennig, F., and Gelse, K.: Mechanical properties of hyaline and repair cartilage studied by nanoindentation. Acta Biomater. 3(6), 873 (2007).CrossRefGoogle ScholarPubMed
19.Franke, O., Goeken, M., Meyers, M.A., Durst, K., and Hodge, A.M.: Dynamic nanoindentation of articular porcine cartilage. Mater. Sci. Eng., C 31(4), 789 (2011).Google Scholar
20.Galli, M., Comley, K.S.C., Shean, T.A.V., and Oyen, M.L.: Viscoelastic and poroelastic mechanical characterization of hydrated gels. J. Mater. Res. 24, 973 (2009).CrossRefGoogle Scholar
21.Mattice, J.M., Lau, A.G., Oyen, M.L., and Kent, R.W.: Spherical indentation load-relaxation of soft biological tissues. J. Mater. Res. 21(8), 2003 (2006).CrossRefGoogle Scholar
22.Oyen, M.L.: Spherical indentation creep following ramp loading. J. Mater. Res. 20(8), 2094 (2005).CrossRefGoogle Scholar
23.Oyen, M.L.: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86(33–35), 5625 (2006).CrossRefGoogle Scholar
24.Galli, M. and Oyen, M.L.: Fast identification of poroelastic parameters from indentation tests. Comput. Model. Eng. Sci. 48, 241 (2009).Google Scholar
25.Oyen, M.L.: Poroelastic nanoindentation responses of hydrated bone. J. Mater. Res. 23, 1307 (2008).CrossRefGoogle Scholar
26.Oyen, M.L.: Sensitivity of polymer nanoindentation creep properties to experimental variables. Acta Mater. 55, 3633 (2007).Google Scholar
27.Lee, E.H. and Radok, J.R.M.: Contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).Google Scholar
28.Qiang, B., Zhang, X., Oyen, M.L., and Greenleaf, J.: Estimate material elasticity by spherical indentation load-relaxation tests on viscoelastic samples of finite thickness. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1418 (2011).CrossRefGoogle Scholar
29.Detournay, E. and Cheng, A.H-D.: Fundamentals of poroelasticity, in Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method, edited by Fairhurst, C. (Pergamon Press Ltd., Oxford, UK, 1993), pp. 113171.Google Scholar
30.Agbezuge, L.K. and Deresiewicz, H.: On the indentation of a consolidating half-space. Israel J. Technol. 12, 322 (1974).Google Scholar
31.Deresiewicz, H.: On the indentation of a consolidating half-space II. Effect of Poisson’s ratio. Israel J. Technol. 15, 89 (1976).Google Scholar
32.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, United Kingdom, 1985).CrossRefGoogle Scholar
33.Bachrach, N.M., Mow, V.C., and Guilak, F.: Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. J. Biomech. 31, 445 (1998).CrossRefGoogle ScholarPubMed
34.Currey, J.D.: Bones (Princeton University Press, Princeton, NJ, 2002).CrossRefGoogle Scholar
35.Oyen, M.L. and Galli, M.: Bone composite mechanics related to collagen hydration state, in Proceedings of the IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, Part VII, June 18–21, 2008, edited by Garikipati, K. and Arruda, E.M. (Woods Hole, MA, 2010).Google Scholar
36.Smit, T.H., Huyghe, J.M., and Cowin, S.C.: Estimation of the poroelastic parameters of cortical bone. J. Biomech. 35, 829 (2002).CrossRefGoogle ScholarPubMed
37.Beno, T., Yoon, Y-J., Cowin, S.C., and Fritton, S.P.: Estimation of bone permeability using accurate microstructural measurements. J. Biomech. 39, 2378 (2006).CrossRefGoogle ScholarPubMed
38.Korhonen, R.K., Laasanen, M.S., Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H.J., and Jurvelin, J.S.: Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35(7), 903 (2002).CrossRefGoogle ScholarPubMed
39.Mow, V.C., Gibbs, M.C., Lai, W.M., Zhu, W.B., and Athanasiou, K.A.: Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J. Biomech. 22(8–9), 853 (1989).CrossRefGoogle ScholarPubMed
40.Galli, M., Fornasiere, E., Cugnoni, J., and Oyen, M.L.: Poroviscoelastic characterization of particle-reinforced gelatin gels using indentation and homogenization. J. Mech. Behav. Biomed. Mater. 4(4), 610 (2011).Google Scholar
41.Mow, V.C., Gu, W.Y., and Chen, F.H.: Structure and function of articular cartilage and meniscus, Chapter 5, in Basic Orthopaedic Biomechanics and Mechanobiology, 3rd ed. (Lippincott, Williams and Wilkins, Philadelphia, PA, 2005), pp. 181258.Google Scholar
42.Mow, V.C., Holmes, M.H., and Lai, W.M.: Fluid transport and mechanical properties of articular cartilage: A review. J. Biomech. 17(5), 377 (1984).CrossRefGoogle ScholarPubMed