Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T10:52:33.943Z Has data issue: false hasContentIssue false

Single crystal growth of cuprates from hydroxide fluxes

Published online by Cambridge University Press:  31 January 2011

S. A. Sunshine
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974
T. Siegrist
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974
L. F. Schneemeyer
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974
Get access

Abstract

Barium and potassium hydroxide have been investigated as fluxes for the growth of cuprate single crystals. The relatively high solubility of transition metals and lanthanoids in these salt fluxes at moderate temperatures allows significant lowering of the growth temperatures required for many phases. Also, phases not stable at high temperatures become accessible. Two new cuprates have been prepared in the Ba–Ca–Cu–O and Ba–Y–Cu–O systems from a Ba(OH)2 · H2O flux. The compounds Ba3(Y0.23Cu0.77)2O5.78 and Ba3(Ca0.24Cu0.76)2O4.43 crystallize in a tetragonal (space group I4/mmm) oxygen deficient Sr3Ti2O7-type structure with lattice parameters a = 4.069(2) Å, 4.022(1) Å and c = 21.61(2) Å, 21.63(2) Å, respectively. The compound (Ba0.92Sr0.08) (Ca0.38Cu0.62)O2.1 crystallizes with a doubled perovskite unit cell along all three axes, a = 8.116(4) Å. In addition, single crystals of Ba2Ycu3O7–δ have been prepared from a KOH flux at 750 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Roth, R. S., Rawn, C. J., Beech, F., Whitler, J. D., and Anderson, J. O., in Ceramic Superconductors, edited by Yan, M. F. (The American Ceramic Society, Westerville, OH, 1988), p. 13.Google Scholar
2.deLeeuw, D. M., Mutsaers, C. A. H. A., Langereis, C., Smoorenburg, H. C. A., and Rommers, P. J., Physica C 152, 39 (1988).CrossRefGoogle Scholar
3.deLeeuw, D. M., Mutsaers, C. A. H. A., Steeman, R. A., Frikkee, E., and Zandbergen, H. W., Physica C 158, 391 (1989).CrossRefGoogle Scholar
4.Osamura, K. and Zhang, W., Jpn. J. Appl. Phys. 26, L2094 (1987).CrossRefGoogle Scholar
5.Schneemeyer, L. F., Waszczak, J. V., Siegrist, T., van Dover, R. B., Rupp, L. W., Batlogg, B., Cava, R. J., and Murphy, D. W., Nature 332, 601 (1987); Inorganic Synthesis, edited by D. W. Murphy and L. V. Interante (J. Wiley & Sons Inc., New York, 1995), p. 210.CrossRefGoogle Scholar
6.Dixon, M. A., Vernooy, P. D., and Stacy, A. M., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 651.Google Scholar
7.Vernooy, P. D., Dixon, M. A., Hollander, F. J., and Stacy, A. M., Inorg. Chem. 29, 2837 (1990).CrossRefGoogle Scholar
8.Ham, W. K., Holland, G. F., and Stacy, A. M., J. Am. Chem. Soc. 110, 5214 (1988).CrossRefGoogle Scholar
9.Marquez, L. N., Keller, S. W., Stacy, A. M., Fendorf, M., and Gronsky, R., Chem. Mater. 5, 761 (1993).CrossRefGoogle Scholar
10.LePage, Y., White, P. S. and Gabe, E. J., Proc. Am. Crystallogr. Assoc. Annual Meeting, 1986 Hamilton, Canada, (AIP, New York, 1986), Poster PA23.Google Scholar
11.Gabe, E. J., LePage, Y., Charland, J-P., Lee, F. L., and White, P. S., J. Appl. Crystallogr. 22, 384 (1989).CrossRefGoogle Scholar
12.Ruddlesden, S. N. and Popper, P., Acta Crystallogr. 11, 54 (1958).CrossRefGoogle Scholar
13.Glarum, S. H., Marshall, J. M., and Schneemeyer, L. F., Phys. Rev. B 37, 7491 (1988).CrossRefGoogle Scholar