Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T23:31:47.781Z Has data issue: false hasContentIssue false

Simplified preparation of REBa2Cu3O7−x via the acetate method

Published online by Cambridge University Press:  03 March 2011

J. McHale
Affiliation:
Center for Materials Research, Temple University, Philadelphia, Pennsylvania 19122-2585
G.H. Myer
Affiliation:
Center for Materials Research, Temple University, Philadelphia, Pennsylvania 19122-2585
R.E. Salomon
Affiliation:
Center for Materials Research, Temple University, Philadelphia, Pennsylvania 19122-2585
Get access

Abstract

High-quality bulk REBa2Cu3O7−x (RE = Y,Eu,Gd,Nd,La) was synthesized by a solution method. Stoichiometric amounts of yttrium, barium, and copper acetates were dissolved in glacial acetic acid. The acid was boiled away leaving a glassy acetate precursor. This precursor has shown amorphous scattering in XRD, a phenomenon consistent with atomic level mixing of reactants. The glassy precursor was subsequently heat-treated with a 5 °C/min ramp to 900 °C and a 2 h soak at 900 °C in air. The final product was obtained after heat treatment under oxygen at 550 °C with slow cooling to room temperature. Final products were analyzed by XRD, SEM, and four probe de-resistivity measurements. The mechanism of both precursor and product formation was examined through substitution studies and XRD. It was found that a combination of a rare earth acetate, barium acetate, and acetic acid was necessary for the formation of an amorphous precursor.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cava, R. J., Batlogg, B., van Dover, R.B., Murphy, D. W., Sunshine, S., Siegrist, T., Rameika, J. P., Reitman, E. A., Zahurak, S., and Espinosa, G. P., Phys. Rev. Lett. 58, 1676 (1987).CrossRefGoogle Scholar
2Wagner, C., Z. Anorg. Allg. Chem. 236, 320 (1938).CrossRefGoogle Scholar
3Brown, W. E., Dollimore, D., and Galwey, A. K., Comprehensive Chemical Kinetics, Volume 22, Reactions in the Solid State, edited by Bamford, C. H. and Tipper, C. H. F. (Elsevier Scientific, New York, 1980).Google Scholar
4Wang, X. Z., Henrt, M., Livage, J., and Rosenndu, I., Solid State Commun. 64, 881 (1987).CrossRefGoogle Scholar
5Kini, A. M., Geiser, U., Kao, H. I., Carlson, K. D., Wang, H. H., Monaghan, M. R., and Williams, J. M., Inorg. Chem. 26, 1836 (1987).CrossRefGoogle Scholar
6Horowitz, H. S., McLain, S.J., Sleight, A. W., Druliner, J. D., Gai, P.L., Van Kavelaar, M. J., Wagner, J. L., Biggs, B. D., and Poon, S. J., Science 243, 66 (1989).CrossRefGoogle Scholar
7Segal, D., Chemistry of Solid State Materials 1, Chemical Synthesis of Advanced Materials (Cambridge University Press, Cambridge, 1989).Google Scholar
8Kordas, G., J. Non-Cryst. Solids 121, 436 (1990).CrossRefGoogle Scholar
9Katayama, S. and Sekine, M., J. Mater. Res. 5, 683 (1990).CrossRefGoogle Scholar
10Messing, G. L., Zhang, S. C., and Jayanthi, G. V., J. Am. Ceram. Soc. 76, 2707 (1993).CrossRefGoogle Scholar
11Real, M. W., Proc. Brit. Ceram. Soc. 38, 59 (1986).Google Scholar
12Ward, T. L., Kodas, T. T., Carim, A. H., Kroeger, D. M., and Hsu, H., J. Mater. Res. 7, 827 (1992).CrossRefGoogle Scholar
13McGrath, P.J. and Laine, R.M., J. Am. Ceram. Soc. 75 (5), 1223 (1992).CrossRefGoogle Scholar
14Coppa, N. V., Myer, G. H., Salomon, R. E., Bura, A., O'Reilly, J. W., Crow, J. E., and Davies, P. K., J. Mater. Res. 7, 2017 (1992).CrossRefGoogle Scholar
15Song, K. H., Liu, H. K., Dou, S. X., and Sorrell, C. C., J. Am. Ceram. Soc. 73 (6), 1771 (1990).CrossRefGoogle Scholar
16Duffy, J. A. and Ingram, M. D., J. Am. Ceram. Soc. 52, 224 (1969).CrossRefGoogle Scholar
17Bartholomew, R. F. and Lewek, S. S., J. Am. Ceram. Soc. 53, 445 (1970).CrossRefGoogle Scholar
18McKittrick, J. and Contreras, R., Thin Solid Films 206, 146 (1991).CrossRefGoogle Scholar
19Kullberg, M. L., Lanagan, M. T., Wu, W., and Poeppel, R. B., Supercon. Sci. Technol. 4, 337 (1991).CrossRefGoogle Scholar
20dos Santos, D. I., Balachandran, U., Lanagan, M. T., Shi, D., Patel, M. A., and Poeppel, R. B., Energy Res. Abstr. 15 (10), No. 23958, ANL/PPRNT-90-204; Order No. DE90008707 (1990).Google Scholar
21dos Santos, D.I., Balachandran, U., Guttschow, R. A., and Poeppel, R. B., J. Non-Cryst. Solids 121, 448 (1990).CrossRefGoogle Scholar
22McHale, J., Schaeffer, R. W., and Salomon, R. E., J. Chem. Ed. 69 (12), 1031 (1992).CrossRefGoogle Scholar
23Peterson, S. and Dienes, E. K., J. Phys. Chem. 55, 1299 (1951).CrossRefGoogle Scholar
24For a discussion of this topic, see Chap. 7 of Kleinberg, J., Argersinger, W. J., and Griswold, E., Inorganic Chemistry (D. C. Heath and Co., Boston, MA, 1960).Google Scholar
25CRC Handbook of Physics and Chemistry, 62nd ed., edited by Weast, R.C. (CRC Press Inc., Boca Raton, FL, 1981).Google Scholar
26For a discussion of the acetic acid solvent system, see Waddington, T.C., Non-Aqueous Solvent Systems (Academic Press, New York, 1965); or Holiday, A. K. and Massey, A. G., Inorganic Chemistry in Non-Aqueous Solvents (Pergamon Press, New York, 1965).Google Scholar
27For information on conductivity of solutions of metal acetates in acetic acid, see Kolthoff, I. M. and William, A., J. Am. Chem. Soc. 55, 239 (1934).Google Scholar
28Davidson, A. W., J. Am. Chem. Soc. 50, 1890 (1928).CrossRefGoogle Scholar
29Personal communication, Titus, D. D., Department of Chemistry, Temple University, Philadelphia, PA 19122 (1993).Google Scholar
30Nirsha, B. M., Chubinidze, A. D., Velikodnyi, Y. A., Zhadanov, B. V., and Olikova, V. A., Zh. Obschch. Khim. USSR 53, 1631 (1983).Google Scholar
31Davidson, A. and McAllister, W., J. Am. Chem. Soc. 52, 519 (1930).CrossRefGoogle Scholar
32Davidson, A. W. and Griswold, E., J. Am. Chem. Soc. 57, 423 (1935).CrossRefGoogle Scholar
33Griswold, E. and van Home, W., J. Am. Chem. Soc. 67, 763 (1945).CrossRefGoogle Scholar