Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T10:40:10.832Z Has data issue: false hasContentIssue false

Simple embedded atom method model for fcc and hcp metals

Published online by Cambridge University Press:  31 January 2011

D. J. Oh
Affiliation:
Department of Materials Science, Thornton Hall, University of Virginia, Charlottesvile, Virginia 22901
R. A. Johnson
Affiliation:
Department of Materials Science, Thornton Hall, University of Virginia, Charlottesvile, Virginia 22901
Get access

Abstract

A procedure based on the embedded atom method (EAM) is presented for developing atomistic models for use in computer simulation calculations, with an emphasis on simple but general schemes for matching experimental data with fitting parameters. Both the electron density function and the two-body potential are taken as exponentially decreasing functions and the model is derived for any choice of cutoff distance. The model has been applied successfully to seven fcc and three hcp metals, but the extension to bcc metals was unsuccessful because of difficulty in matching the shear anisotropy ratio.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
2Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
3Stott, M. J. and Zaremba, E., Phys. Rev. B 22, 1564 (1980).CrossRefGoogle Scholar
4Norskov, J. K. and Lang, N. D., Phys. Rev. B 21, 2131 (1980).CrossRefGoogle Scholar
5Johnson, R. A., in Computer Simulation In Materials Science, edited by Arsenault, R. J., Beeler, J. R. Jr, and Esterling, D. M. (American Society for Metals, Metals Park, OH, 1987), p. 29.Google Scholar
6Daw, M. S., Baskes, M. I., Bisson, C. L., and Wolfer, W. G., in Modelling Environmental Effects On Crack Initiation and Propagation (The Metallurgical Society of AIME, in press).Google Scholar
7Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 45 (1984).CrossRefGoogle Scholar
8Manninen, M., Phys. Rev. B 34, 8486 (1986).CrossRefGoogle Scholar
9Jacobson, K. W., Norskov, J. K., and Puska, M. J., Phys. Rev. B 35, 7423 (1987).CrossRefGoogle Scholar
10Baskes, M. I., J. Nucl. Mater. 128&129, 676 (1984).CrossRefGoogle Scholar
11Foiles, S. M. and Daw, M. S., J. Vac. Sci. Technol. A 3, 1565 (1985).CrossRefGoogle Scholar
12Foiles, S. M., Phys. Rev. B 32, 3409 (1985).CrossRefGoogle Scholar
13Daw, M. S. and Hatcher, R. D., Solid State Commun. 56, 697 (1985).CrossRefGoogle Scholar
14Foiles, S. M., Phys. Rev. B 32, 7685 (1985).CrossRefGoogle Scholar
15Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
16Felter, T. E., Foiles, S. M., Daw, M. S., and Stulen, R. H., Surf. Sci. 171, L379 (1986).CrossRefGoogle Scholar
17Daw, M. S., Surf. Sci. 166, L161 (1986).CrossRefGoogle Scholar
18Ackland, G. J., Tichy, G., Vitek, V., and Finnis, M. W., Philos. Mag. A 56, 735 (1987).CrossRefGoogle Scholar
19Johnson, R. A., Phys. Rev. B 37, 3924 (1988).CrossRefGoogle Scholar
20Johnson, R. A., Phys. Rev. B 6, 2094 (1972).CrossRefGoogle Scholar
21Clementi, E. and Roetti, C., Atomic Data Nucl. Data Tables 14, 177 (1974).CrossRefGoogle Scholar
22Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
23Puska, M. J., Nieminen, R. M., and Manninen, M., Phys. Rev. B 24, 3037 (1981).CrossRefGoogle Scholar
24Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).CrossRefGoogle Scholar
25Flynn, C. D., Phys. Rev. 171, 682 (1968).CrossRefGoogle Scholar
26Metals Reference Book, edited by Smith, C. J. (Butterworth, London, 1976), 5th ed., p. 186.Google Scholar
27Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Massachusetts Institute of Technology, Cambridge, MA, 1971).Google Scholar
28Balluffi, R. W., J. Nucl. Mater. 69 & 70, 616 (1978).Google Scholar
29Wycisk, W. and Feller-Kniepmeier, M., J. Nucl. Mater. 69 & 70, 616 (1978).CrossRefGoogle Scholar
30Kraftmakher, Y. A. and Strelkov, P. G., in Vacancies and Interstitials in Metals, edited by Seeger, A., Schmacher, D., Schilling, W., and Diehl, J. (North-Holland, Amsterdam, 1970), p. 59.Google Scholar
31Johnson, R. A., Cryst. Lattic Defects 1, 37 (1969).Google Scholar
32Daw, M. S., Baskes, M. I., and Foiles, S. M. (privatecommunication).Google Scholar
33Fletcher, R. and Reeves, C. M., Computer J. 7, 149 (1964).CrossRefGoogle Scholar
34Kittel, C., Introduction to Solid State Physics (Wiley, New York, 1971), 4th ed.Google Scholar
35Janot, C., Mallejac, D., and George, B., C. R. Acad. Sci. (Paris) 270, 404 (1970).Google Scholar
36Shestopol, V. O., Sov. Phys. Solid State 7, 2798 (1966).Google Scholar
37Hood, G. M., J. Nucl. Mater. 96, 372 (1981).CrossRefGoogle Scholar
38Johnson, R. A. and Beeler, J. R., in Interatomic Potentials and Crystalline Defects, edited by Lee, J. K. (The Metallurgical Society of AIME, New York, 1981), p. 165.Google Scholar
39Foster, A. H., Harder, J. H., and Bacon, D. J., Mater. Sci. Forum 15-18, 849 (1987).CrossRefGoogle Scholar