Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T11:50:33.499Z Has data issue: false hasContentIssue false

Silica replication of the hierarchical structure of wood with nanometer precision

Published online by Cambridge University Press:  23 May 2011

Daniel Van Opdenbosch
Affiliation:
Department for Materials Science and Engineering—Glass and Ceramics, University of Erlangen-Nuremberg, D-91058 Erlangen, Germany
Gerhard Fritz-Popovski
Affiliation:
Institute of Physics, Montanuniversitaet Leoben, A-8700 Leoben, Austria
Oskar Paris
Affiliation:
Institute of Physics, Montanuniversitaet Leoben, A-8700 Leoben, Austria
Cordt Zollfrank*
Affiliation:
Department for Materials Science and Engineering—Glass and Ceramics, University of Erlangen-Nuremberg,D-91058 Erlangen, Germany
*
a)Address all correspondence to this author. e-mail: cordt.zollfrank@ww.uni-erlangen.de
Get access

Abstract

The structural features of wood were replicated in silica on all levels of hierarchy from the macroscopic to the nanoscopic level of the cellulose elementary fibrils. This was achieved by a series of processing steps on spruce wood templates. Sodium chlorite was used to partially remove the lignin matrix from the wood cell walls, exposing the cellulose fibrils. These were optionally functionalized with maleic acid anhydride to stabilize the fibrillar structure and reduce the shrinkage of the template. Repeated infiltration with tetraethyl orthosilicate in ethanol deposited silica on the fibrils. Calcination at 500 °C removed the rest of the organic template by oxidation and resulted in the fusion of the deposited material into a positive silica replica. Small-angle x-ray scattering evidenced fibrillar structures parallel to the original cellulose fibrils at length scales in the order of 10 nm, suggesting the successful nanoscopic replication of the cellulose fibrils and their orientation.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Will, J., Zollfrank, C., Kaindl, A., Sieber, H., and Greil, P.: Biomorphic ceramics: Technologies based on nature. Keram. Z. 62, 114 (2010).Google Scholar
2.Mann, S.: Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, Oxford, 2001).CrossRefGoogle Scholar
3.Fan, T.-X., Chow, S.-K., and Zhang, D.: Biomorphic mineralization: From biology to materials. Prog. Mater. Sci. 54, 542 (2009).CrossRefGoogle Scholar
4.Bhushan, B.: Biomimetics: Lessons from nature—an overview. Philos. Trans. R. Soc. London, Ser. A 367, 1445 (2009).Google ScholarPubMed
5.Zampieri, A., Schwieger, W., Zollfrank, C., and Greil, P.: Organic preforms of biological origin: Natural plant tissues as templates for inorganic and zeolitic macrostructures, in Handbook of Biomineralization: Biomimetic and Bioinspired Chemistry. (Wiley-VCH, Weinheim, 2007), pp. 255288.CrossRefGoogle Scholar
6.Greil, P.: Templating approaches using natural cellular plant tissue. MRS Bull. 35, 145 (2010).CrossRefGoogle Scholar
7.Will, J., Hoppe, A., Mueller, F.A., Raya, C.T., Fernandez, J.M., and Greil, P.: Bioactivation of biomorphous silicon carbide bone implants. Acta Biomater. 6, 4488 (2010).CrossRefGoogle ScholarPubMed
8.Zhu, S.M., Zhang, D., Li, Z.Q., Furukawa, H., and Chen, Z.X.: Precision replication of hierarchical biological structures by metal oxides using a sonochemical method. Langmuir 24, 6292 (2008).CrossRefGoogle ScholarPubMed
9.Sarikaya, M., Fong, H., Frech, D.W., and Humbert, R.: Biomimetic assembly of nanostructured materials. Mater. Sci. Forum 293, 83 (1999).CrossRefGoogle Scholar
10.Paris, O., Burgert, I., and Fratzl, P.: Biomimetics and biotemplating of natural materials. MRS Bull. 35, 219 (2010).CrossRefGoogle Scholar
11.Fengel, D. and Wegener, G.: Wood: Chemistry, Ultrastructure, Reactions (Walter de Gruyter, Berlin, New York, 1984).Google Scholar
12.Wagenführ, R.: Holzatlas (Fachbuchverl. im Hanser Verl., Leipzig, 2000).Google Scholar
13.Fengel, D. and Wegener, G.: Wood (Walter de Gruyter, Berlin, New York, 1989).Google Scholar
14.Fahlen, J. and Salmen, L.: Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6, 433 (2005).CrossRefGoogle ScholarPubMed
15.Fengel, D.: Ultrastructural behavior of cell wall polysaccharides. Tappi J. 53, 497 (1970).Google Scholar
16.Kerr, A. and Goring, D.: Ultrastructural arrangement of the wood cell wall. Cell. Chem. Tech. 9, 563 (1975).Google Scholar
17.Sell, J. and Zimmermann, T.: Radial fibril agglomerations of the S2 on transverse-fracture surfaces of tension-loaded spruce and white fir. Holz Roh Werkst. 51, 384 (1993).CrossRefGoogle Scholar
18.Jakob, H.F., Fengel, D., Tschegg, S.E., and Fratzl, P.: The elementary cellulose fibril in Picea abies: Comparison of transmission electron microscopy, small-angle x-ray scattering, and wide-angle x-ray scattering results. Macromolecules 28, 8782 (1995).CrossRefGoogle Scholar
19.Gierlinger, N., Luss, S., Koenig, C., Konnerth, J., Eder, M., and Fratzl, P.: Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J. Exp. Bot. 61, 587 (2010).CrossRefGoogle ScholarPubMed
20.Lichtenegger, H., Reiterer, A., Stanzl-Tschegg, S.E., and Fratzl, P.: Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization. J. Struct. Biol. 128, 257 (1999).CrossRefGoogle ScholarPubMed
21.Byrne, C.E.: Polymer, Ceramic and Carbon Composites Derived from Wood. Ph.D. Thesis, Johns Hopkins University, Baltimore, MD, 1996.Google Scholar
22.Greil, P.: Biomorphous ceramics from lignocellulosics. J. Eur. Ceram. Soc. 21, 105 (2001).CrossRefGoogle Scholar
23.Paris, O., Zollfrank, C., and Zickler, G.: Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis. Carbon 43, 53 (2005).CrossRefGoogle Scholar
24.Zollfrank, C. and Fromm, J.: Ultrastructural development of the softwood cell wall during py-rolysis. Holzforschung (2009, in press).CrossRefGoogle Scholar
25.Sieber, H., Hoffmann, C., Kaindl, A., and Greil, P.: Biomorphic cellular ceramics. Adv. Eng. Mater. 2, 105 (2000).3.0.CO;2-P>CrossRefGoogle Scholar
26.Zollfrank, C. and Sieber, H.: Microstructure and phase morphology of wood derived biomorphous SiSiC-ceramics, in 8th International Conference on Ceramic Processing Science (8 ICCPS) (Elsevier Sci Ltd., Hamburg, Germany, 2002)Google Scholar
27.Greil, P., Lifka, T., and Kaindl, A.: Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure. J. Eur. Ceram. Soc. 18, 1961 (1998).CrossRefGoogle Scholar
28.Drum, R.W.: Silicification of Betula woody tissue in vitro. Science 161, 175 (1968).CrossRefGoogle ScholarPubMed
29.Deshpande, A.S., Burgert, I., and Paris, O.: Hierarchically structured ceramics by high-precision nanoparticle casting of wood. Small 2, 994 (2006).CrossRefGoogle ScholarPubMed
30.Persson, P.V., Hafren, J., Fogden, A., Daniel, G., and Iversen, T.: Silica nanocasts of wood fibers: A study of cell-wall accessibility and structure. Biomacromolecules 5, 1097 (2004).CrossRefGoogle ScholarPubMed
31.Shin, Y.S., Liu, J., Chang, J.H., Nie, Z.M., and Exarhos, G.: Hierarchically ordered ceramics through surfactant-templated sol-gel mineralization of biological cellular structures. Adv. Mater. 13, 728 (2001).3.0.CO;2-J>CrossRefGoogle Scholar
32.Shopsowitz, K.E., Qi, H., Hamad, W.Y., and MacLachlan, M.J.: Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468, 422 (2010).CrossRefGoogle ScholarPubMed
33.Jakob, H.F., Tschegg, S.E., and Fratzl, P.: Hydration dependence of wood-cell wall structure in Picea abies: A small-angle x-ray scattering study. Macromolecules 29, 8335 (1996).CrossRefGoogle Scholar
34.Porod, G.: 2. General Theory, in Small Angle X-ray Scattering, edited by Glatter, O. and Kratky, O. (Academic Press, London, 1982).Google Scholar
35.Glatter, O.: A new method for the evaluation of small-angle scattering data. J. Appl. Cryst. 10, 415 (1977).CrossRefGoogle Scholar
36.Glatter, O.: Data evaluation in small angle scattering: Calculation of the radial electron density distribution by means of indirect fourier transformation. Acta Physica Austriaca 47, 83 (1977).Google Scholar
37.Glatter, O.: Evaluation of small-angle scattering data from lamellar and cylindrical particles by the indirect transformation method. J. Appl. Cryst. 13, 577 (1980).CrossRefGoogle Scholar
38.Klason, P.: The cellulose content of spruce wood. Sven. Papperstid. 24, 7 (1921).Google Scholar
39.Hagglund, E.: Chemical composition of spruce and the reactions between wood components and cooking acid in the sulfite process. Suom. Pap.- Puutavaral. 383 (1934).Google Scholar
40.Salmen, L. and Olsson, A.M.: Interaction between hemicelluloses, lignin and cellulose: Structure-property relationships. J. Pulp Pap. Sci. 24, 99 (1998).Google Scholar
41.Ahlgren, P.A., Yean, W.Q., and Goring, D.A.I.: Chlorite delignification of spruce wood. Comparison of the molecular weight of the lignin dissolved with the size of pores in the cell wall. Tappi J. 54, 737 (1971).Google Scholar
42.Timar, M.C., Maher, K., Irle, M., and Mihai, M.D.: Preparation of wood with thermoplastic properties. Part 2. Simplified technologies. Holzforschung 54, 77 (2000).CrossRefGoogle Scholar
43.Zollfrank, C., Kladny, R., Sieber, H., and Greil, P.: Biomorphous SiOC/C-ceramic composites from chemically modified wood templates. J. Eur. Ceram. Soc. 24, 479 (2003).CrossRefGoogle Scholar
44.Sebe, G., Tingaut, P., Safou-Tchiama, R., Petraud, M., Grelier, S., and Jeso, B.D.: Chemical reaction of maritime pine sapwood (Pinus pinaster Soland) with alkoxysilane molecules: A study of chemical pathways. Holzforschung 58, 511 (2004).CrossRefGoogle Scholar
45.Burgert, I., Eder, M., Gierlinger, N., and Fratzl, P.: Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell. Planta 226, 981 (2007).CrossRefGoogle ScholarPubMed
46.Miyafuji, H., Kokaji, H., and Saka, S.: Photostable wood-inorganic composites prepared by the sol-gel process with UV absorbent. J. Wood Sci. 50, 130 (2004).CrossRefGoogle Scholar
47.Fu, Y. and Zhao, G.: Dielectric properties of silicon dioxide/wood composite. Wood Sci. Technol. 41, 511 (2007).CrossRefGoogle Scholar
48.Jungnikl, K., Paris, O., Fratzl, P., and Burgert, I.: The implication of chemical extraction treatments on the cell wall nanostructure of softwood. Cellulose 15, 407 (2008).CrossRefGoogle Scholar
49.Burgert, I., Eder, M., Fruehmann, K., Keckes, J., Fratzl, P., and Stanzl-Tschegg, S.: Properties of chemically and mechanically isolated fibers of spruce (Picea abies [L.] Karst.). Part 1: Structural and chemical characterization. Holzforschung 59, 240 (2005).CrossRefGoogle Scholar
50.Rowell, R.M.: Chemical modification of wood: A short review. Wood Mater. Sci. Eng. 1, 29 (2006).CrossRefGoogle Scholar
51.Beall, F.C.: Differential calorimetric analysis of wood and wood components. Wood Sci. Technol. 5, 159 (1971).CrossRefGoogle Scholar
52.Branca, C. and Di Blasi, C.: Global interinsic kinetics of wood oxidation. Fuel 83, 81 (2003).CrossRefGoogle Scholar
53.Burgert, I., Eder, M., Fruehmann, K., Keckes, J., Fratzl, P., and Stanzl-Tschegg, S.: Properties of chemically and mechanically isolated fibers of spruce (Picea abies [L.] Karst.). Part 3: Mechanical characterization. Holzforschung 59, 354 (2005).CrossRefGoogle Scholar
54.Stoeber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 26, 62 (1968).CrossRefGoogle Scholar
55.Stoll, M. and Fengel, D.: Studies on holocellulose and alpha-cellulose from spruce wood using cryo-ultramicrotomy. I. Structural changes of the fiber walls during delignification and alkali extraction. Wood Sci. Technol. 11, 265 (1977).CrossRefGoogle Scholar
56.Fromm, J., Rockel, B., Lautner, S., Windeisen, E., and Wanner, G.: Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J. Struct. Biol. 143, 77 (2003).CrossRefGoogle ScholarPubMed
57.Fengel, D. and Stoll, M.: Studies on holocellulose and alpha-cellulose from spruce wood using cryo-ultramicrotomy. Part 2. The influence of heavy metal salt impregnation and the dimensions of delignified cell wall layers. Wood Sci. Technol. 12, 261 (1978).CrossRefGoogle Scholar
58.Fengel, D. and Stoll, M.: Über die Veränderungen des Zellquerschnitts, der Dicke der Zellwand und der Wandschichten von Fichtentracheiden innerhalb eines Jahresringes. Holzforschung 27, 1 (1973).CrossRefGoogle Scholar
59.Fratzl, P. and Lebowitz, J.L.: Universality of scaled structure functions in quenched systems undergoing phase separation. Acta Metall. 37, 3245 (1989).CrossRefGoogle Scholar
60.Assink, R.A. and Kay, B.D.: The chemical kinetics of silicate sol-gels: Functional group kinetics of tetraethoxysilane. Colloid Surface. A 74, 1 (1993).CrossRefGoogle Scholar
61.Brinker, C.J. and Scherer, G.W.: Sol-Gel Science (Academic Press, London, 1990), p. 912.Google Scholar
62.Saka, S., Sasaki, M., and Tanahashi, M.: Wood-inorganic composites prepared by sol-gel processing. I. Wood-inorganic composites with porous structure. Mokuzai Gakkaishi 38, 1043 (1992).Google Scholar
63.Fu, Y., Zhao, G., and Chun, S.: Microstructure and physical properties of silicon dioxide/wood composite. Fuhe Cailiao Xuebao 23, 52 (2006).Google Scholar
64.Saka, S. and Yakake, Y.: Wood-inorganic composites prepared by sol-gel process. III. Chemically-modified wood-inorganic composites. Mokuzai Gakkaishi 39, 308 (1993).Google Scholar
65.Saka, S. and Ueno, T.: Several SiO2 wood-inorganic composites and their fire-resisting properties. Wood Sci. Technol. 31, 457 (1997).Google Scholar