Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T09:41:26.583Z Has data issue: false hasContentIssue false

Silaffin primary structure and its effects on the precipitation morphology of titanium dioxide

Published online by Cambridge University Press:  11 May 2016

Robert E. Stote*
Affiliation:
Biological Sciences and Technology Team, US Army Natick Soldier Research, Development and Engineering Center, MA 01760
Shaun F. Filocamo
Affiliation:
Biological Sciences and Technology Team, US Army Natick Soldier Research, Development and Engineering Center, MA 01760
June S. Lum
Affiliation:
Biological Sciences and Technology Team, US Army Natick Soldier Research, Development and Engineering Center, MA 01760
*
a)Address all correspondence to this author. e-mail: Robert.E.Stote.civ@mail.mil
Get access

Abstract

Inorganic oxides exhibit numerous applications influenced by particle size and morphology. While industrial methods for forming oxides involve harsh conditions, nature has the ability to form intricate structures of silicon dioxide (silica) using small peptides and polyamines under environmentally friendly conditions. Recent research has demonstrated that these biomaterials will precipitate other inorganic oxides, such as titanium dioxide (titania). Using the diatom-derived R5 peptide, new peptides with systematic changes (e.g., truncation and substitution) in the R5 primary structure were surveyed for reactivities and the impact on the morphology of the titania. The results demonstrated that (i) basic residues are vital to initiating the reaction, and a minimum local concentration is necessary to sustain the precipitation, (ii) residues containing hydroxyl side chains are important to imparting morphological control on the precipitate, and (iii) buffer conditions can dramatically alter both precipitation and morphology.

Type
Biomineralization and Biomimetics Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shao, M., Xu, X., Huang, J., Zhang, Q., and Ma, L.: TiO2 nanotube-based composites: Synthesis and applications. Sci. Adv. Mater. 5, 962981 (2013).Google Scholar
Tanveer, M. and Guyer, G.T.: Solar assisted photo degradation of wastewater by compound parabolic collectors: Review of design and operational parameters. Renewable Sustainable Energy Rev. 24, 534543 (2013).Google Scholar
Kowalski, D., Kim, D., and Schmuki, P.: TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today 8, 235264 (2013).Google Scholar
Shiba, K., Tagaya, M., Tilley, R.D., and Hanagata, N.: Oxide-based inorganic/organic and nanoporous spherical particles: Synthesis and functional properties. Sci. Technol. Adv. Mater. 14, 023002 (2013).Google Scholar
Nguyen, T-D.: From formation mechanisms to synthetic methods toward shape-controlled oxide nanoparticles. Nanoscale 5, 94559482 (2013).Google Scholar
Kummer, K.M., Taylor, E., and Webster, T.J.: Biological applications of anodized TiO2 nanostructures: A review from orthopedic to stent applications. Nanosci. Nanotechnol. Lett. 4, 483493 (2012).Google Scholar
Gershon, T.: Metal oxide applications in organic-based photovoltaics. Mater. Sci. Technol. 27, 13571371 (2011).Google Scholar
Li, H-H., Chen, R-F., Ma, C., Zhang, S-L., An, Z-F., and Huang, W.: Titanium oxide nanotubes prepared by anodic oxidation and their application in solar cells. Acta Phys.-Chim. Sin. 27, 10171025 (2011).Google Scholar
Sundarrajan, S., Chandrasekaran, A.R., and Ramakrishna, S.: An update on nanomaterials-based textiles for protection and decontamination. J. Am. Ceram. Soc. 93, 39553975 (2010).Google Scholar
Adachi, M., Jinting, J., and Isoda, S.: Synthesis of morphology-controlled titania nanocrystals and applications for dye-sensitized solar cells. Curr. Nanosci. 3, 285295 (2007).Google Scholar
Wu, Y., Yu, J., Liu, H-M., and Xu, B-Q.: One-dimensional TiO2 nanomaterials: Preparation and catalytic applications. J. Nanosci. Nanotechnol. 10, 67076719 (2010).Google Scholar
Chen, Y., Yi, Y., Brennan, J.D., and Brook, M.A.: Development of macroporous titania monoliths using a biocompatible method. Part 1: Material fabrication and characterization. Chem. Mater. 18, 53265335 (2006).Google Scholar
Kroger, N., Deutzmann, R., Bergsdorf, C., and Sumper, M.: Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. U. S. A. 97, 1413314138 (2000).Google Scholar
Kroger, N., Deutzmann, R., and Sumper, M.: Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286, 11291132 (1999).Google Scholar
Poulsen, N., Sumper, M., and Kroger, N.: Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 100, 1207512080 (2003).Google Scholar
Menzel, H., Horstmann, S., Behrens, P., Barnreuther, P., Krueger, I., and Jahns, M.: Chemical properties of polyamines with relevance to the biomineralization of silica. Chem. Commun. 24, 29942995 (2003).Google Scholar
Dickerson, M.B., Sandhage, K.H., and Naik, R.R.: Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 108, 49354978 (2008).Google Scholar
Lopez, P.J., Gautier, C., Livage, J., and Coradin, T.: Mimicking biogenic silica nanostructures formation. Curr. Nanosci. 1, 7383 (2005).Google Scholar
Tomczak, M.M., Glawe, D.D., Drummy, L.F., Lawrence, C.G., Stone, M.O., Perry, C.C., Pochan, D.J., Deming, T.J., and Naik, R.R.: Polypeptide-templated synthesis of hexagonal silica platelets. J. Am. Chem. Soc. 127, 1257712582 (2005).Google Scholar
Luckarift, H.R., Dickerson, M.B., Sandhage, K.H., and Spain, J.C.: Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small 2, 640643 (2006).Google Scholar
Roth, K.M., Zhou, Y., Yang, W., and Morse, D.E.: Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH. J. Am. Chem. Soc. 127, 325330 (2005).Google Scholar
Lin, G-L., Tsai, Y-H., Lin, H-P., Tang, C-Y., and Lin, C-Y.: Synthesis of mesoporous silica helical fibers using a cationic-neutral ternary surfactant in a highly dilute silica solution: Biomimetic silification. Langmuir 23, 41154119 (2007).Google Scholar
Bernecker, A., Wieneke, R., Riedel, R., Seibt, M., Geyer, A., and Steinem, C.: Tailored synthetic polyamines for controlled biomimetic silica formation. J. Am. Chem. Soc. 132, 10231031 (2010).Google Scholar
Kroger, N., Dickerson, M.B., Ahmad, G., Cai, Y., Haluska, M.S., Sandhage, K.H., Poulsen, N., and Sheppard, V.C.: Bioenabled synthesis of rutile (TiO2) at ambient temperature and neutral pH. Angew. Chem., Int. Ed. 45, 72397243 (2006).Google Scholar
Chen, C-L. and Rosi, N.L.: Peptide-based methods for the preparation of nanostructured inorganic materials. Angew. Chem., Int. Ed. 49, 19241942 (2010).Google Scholar
Brutchey, R.L. and Morse, D.E.: Silicatein and the translation of its molecular mechanism of biosilification into low temperature nanomaterial synthesis. Chem. Rev. 108, 49154934 (2008).Google Scholar
Cole, K.E. and Valentine, A.M.: Spermidine and spermine catalyze the formation of nanostructured titanium oxide. Biomacromolecules 8, 16411647 (2007).Google Scholar
Fang, Y., Pousen, N., Dickerson, M.B., Cai, Y., Jones, S.E., Naik, R.R., Kroger, N., and Sandhage, K.H.: Identification of peptides capable of inducing the formation of titania but not silica via a subtractive bacteriophage display approach. J. Mater. Chem. 18, 38713875 (2008).Google Scholar
Belton, D., Paine, G., Patwardhan, S.V., and Perry, C.C.: Towards an understanding of (bio)silification: The role of amino acids and lysine oligomers in silification. J. Mater. Chem. 14, 22312241 (2004).Google Scholar
Dickerson, M.B., Jones, S.E., Cai, Y., Ahmad, G., Naik, R.R., Kroger, N., and Sandhage, K.H.: Identification and design of peptides for the rapid, high-yield formation of nanoparticulate TiO2 from aqueous solutions at room temperature. Chem. Mater. 20, 15781584 (2008).Google Scholar
Choi, N., Tan, L., Jang, J-R., Um, Y.M., Yoo, P.J., and Choe, W-S.: The interplay of peptide sequence and local structure in TiO2 biomineralization. J. Inorg. Biochem. 115, 2027 (2012).CrossRefGoogle ScholarPubMed
Zhang, D., Yang, D., Zhang, H., Lu, C., and Qi, L.: Synthesis and photocatalytic properties of hollow microparticles of titania and titania/carbon composites templated by sephadex G-100. Chem. Mater. 18, 34773485 (2006).Google Scholar
Filocamo, S., Stote, R., Ziegler, D., and Gibson, H.: Entrapment of DFPase in titania coatings from biomimetically derived method. J. Mater. Res. 8, 10421051 (2011).Google Scholar
Puddu, V., Slocik, J.M., Naik, R.R., and Perry, C.C.: Titania binding peptides as templates in the biomimetic synthesis of stable titania nanosols: Insight into the role of buffers in peptide-mediated mineralization. Langmuir 29, 94649472 (2013).Google Scholar
Kharlampieva, E., Slocik, J.M., Singamaneni, S., Poulsen, N., Kroger, N., Naik, R.R., and Tsukruk, V.V.: Protein-enabled synthesis of monodisperse titania nanoparticles on and within polyelectrolyte matrices. Adv. Funct. Mater. 19, 23032311 (2009).Google Scholar
Ahn, S., Park, S., and Lee, S-Y.: Oligo(L-lysine)-induced titanium dioxide: Effects of consecutive lysine on precipitation. J. Cryst. Growth 335, 100105 (2011).Google Scholar
Sewell, S.L. and Wright, D.W.: Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from Cylindrotheca fusiformis. Chem. Mater. 18, 31083113 (2006).Google Scholar
Supplementary material: File

Stote supplementary material

Figures S1-S17

Download Stote supplementary material(File)
File 13.4 MB