Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T14:52:44.710Z Has data issue: false hasContentIssue false

Scratch resistance of Al/SiC metal/ceramic nanolaminates

Published online by Cambridge University Press:  10 October 2011

Danny R.P. Singh
Affiliation:
Materials Science and Engineering School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106
Nikhilesh Chawla*
Affiliation:
Materials Science and Engineering School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287-6106
*
a)Address all correspondence to this author. e-mail: nchawla@asu.edu
Get access

Abstract

Al/SiC nanolaminates have been shown to possess excellent combination of mechanical strength and flexibility. While metal–ceramic multilayers present a tremendous opportunity for hard coatings, the strength evaluation is usually carried out under static loading conditions such as nanoindentation and microcompression testing. In this study, we have studied the scratch resistance behavior of Al/SiC nanolaminates. These properties are then compared to monolithic films of Al and SiC. Finally, the deformation behavior under such loading was quantified by critical load, work of deformation, and postexperimental microstructural analysis by scanning electron microscopy and focused ion beam cross sections. It is shown that the combination of hard SiC and plastic Al layers provides enhanced resistance to scratch loading and makes these materials as very good candidates for wear-resistant coatings.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lu, T.Z., Alexe, M., Scholz, R., Talelaev, V., and Zacharias, M.: Multilevel charge storage in silicon nanocrystal multilayers. Appl. Phys. Lett. 87, 202110 (2005).CrossRefGoogle Scholar
2.Lima, A.L., Zhang, X., Misra, A., Booth, C.H., Bauer, E.D., and Hundley, M.F.: Length scale effects on the electronic transport properties of nanometric Cu/Nb multilayers. Thin Solid Films 515, 3574 (2007).CrossRefGoogle Scholar
3.Promnimit, S., Jafri, S.H.M., Sweatman, D., and Dutta, J.: Conduction properties of layer-by-layer self-assembled multilayer nanoparticulate structures. J. Nanoelectron. Optoelectron. 3, 184 (2008).CrossRefGoogle Scholar
4.Albrecht, M., Hu, G., Guhr, I.L., Ulbrich, T.C., Boneberg, J., Leiderer, P., and Schatz, G.: Magnetic multilayers on nanospheres. Nat. Mater. 4, 203 (2005).CrossRefGoogle ScholarPubMed
5.Wang, X., Masumoto, H., Someno, Y., and Hirai, T.: Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles. Appl. Phys. Lett. 72, 3264 (1998).CrossRefGoogle Scholar
6.Hiltunen, J., Seneviratne, D., Sun, R., Stolfi, M., Tuller, H.L., Lappalainen, J., and Lantto, V.: BaTiO3–SrTiO3 multilayer thin film electro-optic waveguide modulator. Appl. Phys. Lett. 89, 242904 (2006).CrossRefGoogle Scholar
7.PalDey, S. and Deevi, S.C.: Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review. Mater. Sci. Eng., A 342, 58 (2003).CrossRefGoogle Scholar
8.Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
9.Wang, Y.C., Misra, A., and Hoagland, R.G.: Fatigue properties of nanoscale Cu/Nb multilayers. Scr. Mater. 54, 1593 (2006).CrossRefGoogle Scholar
10.Xie, Z.H., Hoffman, M., Munroe, P., Singh, R., Bendavid, A., and Martin, P.J.: Microstructural response of TiN monolithic and multilayer coatings during microscratch testing. J. Mater. Res. 22, 2312 (2007).CrossRefGoogle Scholar
11.Graça, S., Colaço, R., and Vilar, R.: Micro-to-nano indentation and scratch hardness in the Ni-Co system: Depth dependence and implications for tribological behavior. Tribol. Lett. 31, 177 (2008).CrossRefGoogle Scholar
12.Martínez, E., Romero, J., Lousa, A., and Esteve, J.: Wear behavior of nanometric CrN/Cr multilayers. Surf. Coat. Tech. 163164, 571 (2003).CrossRefGoogle Scholar
13.Mori, T., Fukuda, S., and Takemura, Y.: Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering. Surf. Coat. Tech. 140, 122 (2001).CrossRefGoogle Scholar
14.Lu, X., Shi, B., Li, L.K.Y., Luo, J., and Mou, J.: Nanoindentation and nanotribological behavior of Fe-N/Ti-N multilayers with different thickness of Fe-N layers. Wear 247, 15 (2001).CrossRefGoogle Scholar
15.Wen, S.P., Zong, R.L., Zeng, F., Guo, S., and Pan, F.: Nanoindentation and nanoscratch behaviors of Ag/Ni multilayers. Appl. Surf. Sci. 255(8), 4558 (2009).CrossRefGoogle Scholar
16.Wo, P.C., Munroe, P.R., Xie, Z., Zhou, Z., and Li, K.Y.: Three-dimensional visualization of scratch-induced subsurface damage in TiSiN/TiN multilayer coating using focused ion beam-scanning electron microscopic tomography technique. J. Am. Ceram. Soc. 94(5), 1598 (2011).CrossRefGoogle Scholar
17.Vyas, A., Li, K.Y., and Shen, Y.G.: Influence of deposition conditions on mechanical and tribological properties of nanostructured TiN/CNx multilayer films. Surf. Coat. Tech. 203(8), 967 (2009).CrossRefGoogle Scholar
18.Chawla, N. and Singh, D.R.P.: Three dimensional (3D) visualization of damage in metal-ceramic nanolayers by focused ion beam (FIB) serial sectioning. Microsc. Microanal. 14, 140 (2008).CrossRefGoogle Scholar
19.Chawla, N., Singh, D.R., Shen, Y.L., Tang, G., and Chawla, K.K.: Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites. J. Mater. Sci. 43, 4383 (2008).CrossRefGoogle Scholar
20.Deng, X., Chawla, N., Chawla, K.K., Koopman, M., and Chu, J.P.: Mechanical behavior of multilayered nanoscale metal-ceramic composites. Adv. Eng. Mater. 7, 1099 (2005).CrossRefGoogle Scholar
21.Deng, X., Cleveland, C., Chawla, N., Karcher, T., Koopman, M., and Chawla, K.K.: Nanoindentation behavior of nanolayered metal-ceramic composites. J. Mater. Eng. Perform. 14, 417 (2005).CrossRefGoogle Scholar
22.Singh, D.R.P., Chawla, N., Tang, G., and Shen, Y-L.: Micropillar compression of Al/SiC nanolaminates. Acta Mater. 58, 6628 (2010).CrossRefGoogle Scholar
23.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
24.Bhattacharyya, D., Mara, N.A., Dickerson, P., Hoagland, R.G., and Misra, A.: A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al-TiN multilayered composites. Philos. Mag. 90, (13), 1711 (2010).CrossRefGoogle Scholar
25.Uchic, M.D., Shade, P.A., and Dimiduk, D.M.: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).CrossRefGoogle Scholar
26.Han, S.M., Phillips, M.A., and Nix, W.D.: Study of strain softening behavior of Al-Al3Sc multilayers using microcompression testing. Acta Mater. 57(15), 4473 (2009).CrossRefGoogle Scholar
27.Bull, S.J. and Berasetegui, E.G.: An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol. Int. 39, 99 (2006).CrossRefGoogle Scholar
28.Larsson, M., Olsson, M., Hedenqvist, P., and Hogmark, S.: Mechanisms of coating failure as demonstrated by scratch and indentation testing of TiN coated HSS. Surf. Eng. 16, 436 (2000).CrossRefGoogle Scholar
29.McAdams, S.D., Tsui, T.Y., Pharr, G.M., and Oliver, W.C.: Effects of interlayers in the scratch adhesion performance of ultra-thin films of copper and gold on silicon substrates, in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 809.Google Scholar
30.Bertrand-Lambotte, P., Loubet, J.L., Verpy, C., and Pavan, S.: Understanding of automotive clearcoats scratch resistance. Thin Solid Films 420421, 281 (2002).CrossRefGoogle Scholar
31.Karimi, A., Wang, Y., Cselle, T., and Morstein, M.: Fracture mechanisms in nanoscale layered hard thin films. Thin Solid Films 420421, 275 (2002).CrossRefGoogle Scholar
32.Briscoe, B.J., Pelillo, E., and Sinha, S.K.: Scratch hardness and deformation maps for polycarbonate and polyethylene. Polym. Eng. Sci. 36, 2996 (1996).CrossRefGoogle Scholar
33.Jardret, V.D. and Oliver, W.C.: Viscoelastic behavior of polymer films during scratch test: A quantitative analysis, in Thin Films–Stresses and Mechanical Properties VIII, edited by Vinci, R., Kraft, O., Moody, N., Besser, P., and Shaffer, E. II (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA, 2000), p. 251.Google Scholar