Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T23:38:04.821Z Has data issue: false hasContentIssue false

Scanning tunneling microscope observations of the mirror region of silicate glass fracture surfaces

Published online by Cambridge University Press:  03 March 2011

D.M. Kulawansa
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
L.C. Jensen
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
S.C. Langford
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
J.T. Dickinson
Affiliation:
Physics Department, Washington State University, Pullman, Washington 99164-2814
Yoshihisa Watanabe
Affiliation:
Department of Materials Science and Engineering, National Defense Academy, Hashirimizu, Yokosuka, Kanagawa 239, Japan
Get access

Abstract

We report scanning tunneling microscope images of gold-coated fracture surfaces of soda lime glass and fused silica in the mirror region. The scans show a variety of nanometer scale features that are attributed to fracture phenomena at this scale. We find considerable similarity to the structures observed in regions of extensive crack branching (e.g., “mist”). The density of these features increases as one progresses away from the crack origin toward the mirror-mist boundary. Comparisons are made between soda lime glass and fused silica, revealing differences in the local deformation behavior of these two materials. Self-similarity of the observed structures is probed by measurements of the fractal dimension, Df, of the surfaces created in soda lime glass near the mirror-mist boundary, where we observe 2.17 > Df > 2.40.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rice, R. W., in Fractogmphy of Ceramic and Metal Failures, edited by Mecholsky, J. J. Jr., and Powell, S. R. Jr., (American Society for Testing and Materials, Philadelphia, PA, 1984), pp. 5103.CrossRefGoogle Scholar
2.Kirchner, H. P. and Kirchner, J.W., J. Am. Ceram. Soc. 62, 198 (1979).CrossRefGoogle Scholar
3.Kirchner, H.P. and Conway, J.C. Jr., J. Am. Ceram. Soc. 70, 413 (1987); J. Am. Ceram. Soc. 70, 419 (1987).CrossRefGoogle Scholar
4.Ramulu, M., Bradt, R. C., Kobayashi, A. S., and Yang, K. H., in Fractography of Glasses and Ceramics, edited by Verner, J. R. and Frechette, V. D. (American Ceramic Society, Westerville, OH, 1988), pp. 215227.Google Scholar
5.Tsai, Y.L. and Mecholsky, J. J. Jr., Int. J. Fracture 57, 167 (1992).CrossRefGoogle Scholar
6.Langford, S. C., Ma, Z-Y., Jensen, L. C., and Dickinson, J.T., J. Vac. Sci. Technol. A 8, 3470 (1990).CrossRefGoogle Scholar
7.Kulawansa, D. M., Langford, S. C., and Dickinson, J. T., J. Mater. Res. 7, 1292 (1992).CrossRefGoogle Scholar
8.Lawn, B. R., Hockey, B.J., and Wiederhorn, S.M., J. Mater. Sci. 15, 1207 (1980).CrossRefGoogle Scholar
9.Lawn, B. R., Jakus, K., and Gonzalez, A. C., J. Am. Ceram. Soc. 68, 23 (1985).CrossRefGoogle Scholar
10.Peter, K. W., J. Non-Cryst. Solids 5, 103 (1970).CrossRefGoogle Scholar
11.Marsh, D.M., Proc. Royal Soc. (London) Series A 279, 429 (1964).Google Scholar
12.Arora, A., Marshall, D. B., Lawn, B. R., and Swain, M. V., J. Non-Cryst. Solids 31, 415 (1979).CrossRefGoogle Scholar
13.Wiederhorn, S.M., Johnson, H., Diness, A.M., and Heuer, A.H., J. Am. Ceram. Soc. 57, 336 (1974).CrossRefGoogle Scholar
14.Mandelbrot, B. B., Passoja, D. E., and Paullay, A. J., Nature 308, 721 (1984).CrossRefGoogle Scholar
15.Mecholsky, J.J., Passoja, D.E., and Feinberg-Ringel, K. S., J. Am. Ceram. Soc. 72, 60 (1989).CrossRefGoogle Scholar
16.Mecholsky, J.J., Mackin, T.J., and Passoja, D.E., in Fractogra-phy of Glasses and Ceramics, edited by Verner, J. R. and Frechette, V. D. (American Ceramic Society, Westerville, OH, 1988), pp. 127134.Google Scholar
17.Underwood, E. R. and Banerji, K., Mater. Sci. Eng. 80, 1 (1980).CrossRefGoogle Scholar
18.Passoja, D. E., in Fractography of Glasses and Ceramics, edited by Verner, J. R. and Frechette, V. D. (American Ceramic Society, Westerville, OH, 1988), pp. 101126.Google Scholar
19.Tsai, Y.L. and Mecholsky, J.J. Jr., J. Mater. Res. 6, 1248 (1991).CrossRefGoogle Scholar
20.Mecholsky, J. J. Jr., and Plaia, J. R., J. Non-Cryst. Solids 146, 249 (1992).CrossRefGoogle Scholar
21.Lyding, J.W., Skala, S., Hubacek, J.S., Brockenbrough, R., and Gammie, G., Rev. Sci. Instrum. 59, 1897 (1988).CrossRefGoogle Scholar
22.Jaklevic, R.C., Elie, L., Shen, W., and Chen, J.T., J. Vac. Sci. Technol. A 6, 448 (1988).CrossRefGoogle Scholar
23.Jaklevic, R. C., Elie, L., Shen, W., and Chen, J. T., Appl. Phys. Lett. 52, 1656 (1988).CrossRefGoogle Scholar
24.Reiss, G., Vancea, J., Wittmann, H., Zweck, J., and Hoffmann, H., J. Appl. Phys. 67, 1156 (1990).CrossRefGoogle Scholar
25.Denley, D. R., J. Vac. Sci. Technol. A 8, 603 (1990).CrossRefGoogle Scholar
26.Mandelbrot, B. B. and Voss, R. F., in Noise in Physical Systems and 1f Noise, edited by Savelli, M., Lecoy, G., and Nougier, J-P. (Elsevier, Amsterdam, 1983), pp. 3139.Google Scholar
27.Turcotte, D. L., Ann. Rev. Fluid Mech. 20, 5 (1988).CrossRefGoogle Scholar
28.Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes (Cambridge University Press, 1986), pp. 423429.Google Scholar
29.Mitchell, M. W. and Bonnell, D. A., J. Mater. Res. 5, 2244 (1990).CrossRefGoogle Scholar
30.Pan, T-Y., Robertson, R. E., and Filisko, F. E., J. Mater. Sci. 24, 3635 (1989).CrossRefGoogle Scholar
31.Sommer, E., Eng. Fracture Mech. 1, 539 (1969).CrossRefGoogle Scholar
32.Robertson, R.E. and Mindroiu, V.E., Polym. Eng. Sci. 27, 55 (1987).CrossRefGoogle Scholar
33.Kulawansa, D. M., Dickinson, J. T., Langford, S. C., and Watanabe, Y., J. Mater. Res. 8, 2543 (1993).CrossRefGoogle Scholar
34.Argon, A. S. and Salama, M. M., Mater. Sci. Eng. 23, 219 (1976).CrossRefGoogle Scholar
35.Poncelet, E.F., J. Soc. Glass Technol. 42, 279T (1958).Google Scholar
36.Johnson, J. W. and Holloway, D. G., Philos. Mag. 17, 899 (1968).CrossRefGoogle Scholar
37.Wiederhorn, S. M., J. Am. Ceram. Soc. 52, 99 (1969).CrossRefGoogle Scholar
38.Tirosh, J. and Tetelman, A.S., Int. J. Fracture 12, 187 (1976).CrossRefGoogle Scholar
39.Ravi-Chandra, K. and Knauss, W. G., Int. J. Fracture 26, 65 (1984).CrossRefGoogle Scholar