Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T07:37:21.531Z Has data issue: false hasContentIssue false

Role of annealing conditions on the ferromagnetic and dielectric properties of La2NiMnO6

Published online by Cambridge University Press:  28 February 2011

Farheen N. Sayed
Affiliation:
Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
S.N. Achary*
Affiliation:
Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
O.D. Jayakumar
Affiliation:
Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
S.K. Deshpande
Affiliation:
UGC-DAE Consortium for Scientific Research, Bhabha Atomic Research Centre, Mumbai 400085, India
P.S.R. Krishna
Affiliation:
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
S. Chatterjee
Affiliation:
Department of Condensed Matter Physics, Tata Institute of Fundamental Research, Mumbai 400005, India
P. Ayyub
Affiliation:
Department of Condensed Matter Physics, Tata Institute of Fundamental Research, Mumbai 400005, India
A.K. Tyagi*
Affiliation:
Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
*
a)Address all correspondence to these authors. e-mail: sachary@barc.gov.in
Get access

Abstract

La2NiMnO6 (LNMO) was prepared by a combustion method followed by heating at high temperature. Subsequently, the preformed LNMO was annealed in air, oxygen, or N2 atmosphere and characterized by powder x-ray diffraction (XRD), neutron diffraction, superconducting quantum interference device magnetometry, and dielectric analysis. Structural studies by XRD and neutron diffraction revealed the coexistence of partially cation disordered monoclinic (31%) and rhombohedral (69%) phases in the sample annealed in air. However, the sample annealed in oxygen shows about 50:50% of monoclinic and rhombohedral phases. Relaxor-like behavior with relative permittivity of the order of 104 was observed in the sample annealed in air, while relative permittivity decreases to about 200 in samples annealed in oxygen atmosphere. The magnetic properties indicate a well-defined ferromagnetic phase in the oxygen-annealed sample compared to a feeble ferromagnetic signature in the air-annealed one. The dielectric and ferromagnetism of LNMO samples have been related to formation and annihilation of oxygen vacancies.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fiebig, M., Lottermoser, T., Fröhlich, D., Goltsev, A.V., and Pisarev, R.V.: Observation of coupled magnetic and electric domains. Nature 419, 818 (2002).CrossRefGoogle ScholarPubMed
2.Ramesh, R. and Spaldin, N.A.: Multiferroics: Progress and prospects in thin films. Nat. Mater. 6, 21 (2007).CrossRefGoogle ScholarPubMed
3.Prellier, W., Singh, M.P., and Murugavel, P.: The single-phase multiferroic oxides: From bulk to thin film. J. Phys. Condens. Matter 17, R803 (2005).CrossRefGoogle Scholar
4.dos Santos, A.M., Cheetham, A.K., Atou, T., Syono, Y., Yamaguchi, Y., Ohoyama, K., Chiba, H., and Rao, C.N.R.: Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO3. Phys. Rev. B 66, 064425 (2002).CrossRefGoogle Scholar
5.Seshadri, R. and Hill, N.A.: Visualizing the role of Bi 6s 2 lone pairs in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 13, 2892 (2001).CrossRefGoogle Scholar
6.Jayakumar, O.D., Achary, S.N., Girija, K.G., Tyagi, A.K., Sudakar, C., Lawes, G., Naik, R., Nisar, J., Peng, X., and Ahuja, R.: Theoretical and experimental evidence of enhanced ferromagnetism in Ba and Mn cosubstituted BiFeO3. Appl. Phys. Lett. 96, 032903 (2010).CrossRefGoogle Scholar
7.Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).CrossRefGoogle ScholarPubMed
8.Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).CrossRefGoogle ScholarPubMed
9.Yen, F., de la Cruz, C., Lorenz, B., Galstyan, E., Sun, Y.Y., Gospodinov, M., and Chu, C.W.: Magnetic phase diagrams of multiferroic hexagonal RMnO3 (R = Er, Yb, Tm, and Ho). J. Mater. Res. 22, 2163 (2007).CrossRefGoogle Scholar
10.Noda, Y., Kimura, H., Fukunaga, M., Kobayashi, S., Kagomiya, I., and Kohn, K.: Magnetic and ferroelectric properties of multiferroic RMn2O5. J. Phys. Condens. Matter 20, 434206 (2008).CrossRefGoogle Scholar
11.Yang, C.-H., Lee, S.-H., Koo, T.Y., and Jeong, Y.H.: Dynamically enhanced magnetodielectric effect and magnetic-field-controlled electric relaxations in La-doped BiMnO3. Phys. Rev. B 75, 140104 R (2007).CrossRefGoogle Scholar
12.Goodenough, J.B., Wold, A., Arnott, R.J., and Menyuk, N.: Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn3+. Phys. Rev. 124, 373 (1961).CrossRefGoogle Scholar
13.Pradhan, P., Guo, H.Z., LeClair, P., and Gupta, A.: Dielectric relaxation and magnetodielectric response in epitaxial thin films of La2NiMnO6. Appl. Phys. Lett. 92, 022909 (2008).CrossRefGoogle Scholar
14.Blasse, G.: Ferromagnetic interactions in non-metallic perovskites. J. Phys. Chem. Solids 26, 1969 (1965).CrossRefGoogle Scholar
15.Rogado, N.S., Li, J., Sleight, A.W., and Subramanian, M.A.: Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Adv. Mater. 17, 2225 (2005).CrossRefGoogle Scholar
16.Dass, R.I., Yan, J.-Q., and Goodenogh, J.B.: Oxygen stoichiometry, ferromagnetism, and transport properties of La2– xNiMnO6–d. Phys. Rev. B 68, 064415 (2003).CrossRefGoogle Scholar
17.Booth, R.J., Fillman, R., Whitaker, H., Abanti Nag, R.M., Tiwari, , Ramanujachary, K.V., Gopalakrishnan, J., and Lofland, S.E.: An investigation of structural, magnetic and dielectric properties of R2NiMnO6 (R = rare earth, Y). Mater. Res. Bull. 44, 1559 (2009).CrossRefGoogle Scholar
18.Blasco, J., Sanchez, M.C., Peraj-Cacho, J., Garacia, J., Subias, G., and Campo, S.: Synthesis and structural study of LaNi1–xMnxO3+δ perovskites. J. Phys. Chem. Solids 63, 781 (2002).CrossRefGoogle Scholar
19.Blasco, J., Garacia, J., Sanchez, M.C., Campo, J., Subias, G., and Perz-Cacho, J.: Magnetic properties of LaNi1−xMnxO3+δ perovskites. Eur. Phys. J. 30, 469 (2002).CrossRefGoogle Scholar
20.Singh, M.P., Grygiel, C., Sheets, W.C., Boullay, Ph., Hervieu, M., Prellier, W., Mercey, B., Simon, Ch., and Raveau, B.: Absence of long-range Ni/Mn ordering in ferromagnetic La2NiMnO6 thin films. Appl. Phys. Lett. 91, 012503 (2007).CrossRefGoogle Scholar
21.Ritter, C., Ibarra, M.R., De Teresa, J.M., Algarabel, P.A., Marquina, C., Blasco, J., García, J., Oseroff, S., and Cheong, S.-W.: Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+d. Phys. Rev. B 56, 8902 (1997).CrossRefGoogle Scholar
22.Sánchez, R.D., Causa, M.T., Sereni, J., Vallet-Regí, M., Sayagués, M.J., and González-Calbet, J.M.: Specific heat, magnetic susceptibility and electrical resistivity measurements on LaNiO3. J. Alloys Compd. 191, 287 (1993).CrossRefGoogle Scholar
23.Asai, K., Sekizawa, H., and Iida, S.: Magnetization measurements and 55Mn NMR studies of LaNi0.5Mn0.5O3. J. Phys. Soc. Jpn. 47, 1054 (1979).CrossRefGoogle Scholar
24.Bull, C.L., Gleeson, D., and Knight, K.S.: Determination of B-site ordering and structural transformations in the mixed transition metal perovskites La2CoMnO6 and La2NiMnO6. J. Phys. Condens. Matter 15, 4927 (2003).CrossRefGoogle Scholar
25.Dass, R.I. and Goodenough, J.B.: Multiple magnetic phases of La2CoMnO6–δ (0.0 ≤ δ ≤ 0.05). Phys. Rev. B 67, 014401 (2003).CrossRefGoogle Scholar
26.Singh, M.P., Truong, K.D., Jandl, S., and Fournier, P.: Multiferroic double perovskites: Opportunities, issues, and challenges. J. Appl. Phys. 107, 09D917 (2010).CrossRefGoogle Scholar
27.Singh, M.P., Truong, K.D., Jandl, S., and Fournier, P.: Long-range Ni/Mn structural order in epitaxial double perovskite La2NiMnO6 thin films. Phys. Rev. B 79, 224421 (2009).CrossRefGoogle Scholar
28.Lin, Y.Q., Chen, X.M., and Liu, X.Q.: Relaxor-like dielectric behavior in La2NiMnO6 double perovskite ceramics. Solid State Commun. 149, 784 (2009).CrossRefGoogle Scholar
29.Yoshii, K., Ikeda, N., Matsuo, Y., Horibe, Y., and Mori, S.: Magnetic and dielectric properties of RFe2O4, RFeMO4, and RGaCuO4 (R = Yb and Lu, M = Co and Cu). Phys. Rev. B 76, 024423 (2007).CrossRefGoogle Scholar
30.Ikeda, N., Ohsumi, H., Ohwada, K., Ishii, K., Inami, T., Kakurai, K., Murakami, Y., Yoshii, K., Mori, S., Horibe, Y., and Kito, H.: Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136 (2005).CrossRefGoogle ScholarPubMed
31.Rodriguez-Carvajal, J.: Multi-pattern Rietveld refinement program Fullprof.2K, version 1.6. July (2000).Google Scholar
32.Paulsen, J.M., Thomas, C.L., and Dahn, J.R.: O2 structure Li2/3[Ni1/3Mn2/3]O2: A new layered cathode material for rechargeable lithium batteries. I. Electrochemical properties. J. Electrochem. Soc. 147, 861 (2000).CrossRefGoogle Scholar
33.Cao, W. and Randall, C.A.: Grain size and domain size relations in bulk ceramic ferroelectric materials. J. Phys. Chem. Solids 57, 1499 (1996).CrossRefGoogle Scholar
34.West, A.R., Sinclair, D.C., and Hirose, H.: Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J. Electroceram. 1, 65 (1997).CrossRefGoogle Scholar