Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T12:56:57.850Z Has data issue: false hasContentIssue false

Review of surface water interactions with metal oxide nanoparticles

Published online by Cambridge University Press:  15 February 2019

Jason J. Calvin
Affiliation:
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
Peter F. Rosen
Affiliation:
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
Nancy L. Ross
Affiliation:
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
Alexandra Navrotsky
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616, USA
Brian F. Woodfield*
Affiliation:
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
*
a)Address all correspondence to this author. e-mail: brian_woodfield@byu.edu
Get access

Abstract

Surface water can affect the properties of metal oxide nanoparticles. Investigations on several systems revealed that nanoparticles have different thermodynamic properties than their bulk counterparts due to adsorbed water on their surfaces. Some thermodynamically metastable phases of bulk metal oxides become stable when reduced to the nanoscale, partially due to interactions between high energy surfaces and surface water. Water adsorption microcalorimetry and high-temperature oxide melt solution calorimetry, low-temperature specific heat calorimetry, and inelastic neutron scattering are used to understand the interactions of surface water with metal oxide nanoparticles. Computational methods, such as molecular dynamics simulations and density functional theory calculations, have been used to study these interactions. Investigations on titania, cassiterite, and alumina illustrate the insights gained by these measurements. The energetics of water on metal oxide surfaces are different from those of either liquid water or hexagonal ice, and there is substantial variation in water interactions on different metal oxide surfaces.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Heath, J.R., Shiang, J., and Alivisatos, A.: Germanium quantum dots: Optical properties and synthesis. J. Chem. Phys. 101, 16071615 (1994).CrossRefGoogle Scholar
Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933937 (1996).CrossRefGoogle Scholar
Dou, L., Wong, A.B., Yu, Y., Lai, M., Kornienko, N., Eaton, S.W., Fu, A., Bischak, C.G., Ma, J., and Ding, T.: Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 15181521 (2015).CrossRefGoogle ScholarPubMed
Huang, B., Schliesser, J., Olsen, R.E., Smith, S.J., and Woodfield, B.F.: Synthesis and thermodynamics of porous metal oxide nanomaterials. Curr. Inorg. Chem. 4, 4053 (2014).CrossRefGoogle Scholar
Trueba, M. and Trasatti, S.P.: γ‐Alumina as a support for catalysts: A review of fundamental aspects. Eur. J. Inorg. Chem. 2005, 33933403 (2005).CrossRefGoogle Scholar
Rahmati, M., Huang, B., Mortensen, M.K. Jr., Keyvanloo, K., Fletcher, T.H., Woodfield, B.F., Hecker, W.C., and Argyle, M.D.: Effect of different alumina supports on performance of cobalt Fischer–Tropsch catalysts. J. Catal. 359, 92100 (2018).CrossRefGoogle Scholar
Smith, S.J., Huang, B., Liu, S., Liu, Q., Olsen, R.E., Boerio-Goates, J., and Woodfield, B.F.: Synthesis of metal oxide nanoparticles via a robust “solvent-deficient” method. Nanoscale 7, 144156 (2015).CrossRefGoogle Scholar
Olsen, R.E., Bartholomew, C.H., Huang, B., Simmons, C., and Woodfield, B.F.: Synthesis and characterization of pure and stabilized mesoporous anatase titanias. Microporous Mesoporous Mater. 184, 714 (2014).CrossRefGoogle Scholar
Mardkhe, M.K., Huang, B., Bartholomew, C.H., Alam, T.M., and Woodfield, B.F.: Synthesis and characterization of silica doped alumina catalyst support with superior thermal stability and unique pore properties. J. Porous Mater. 23, 475487 (2016).CrossRefGoogle Scholar
Huang, B., Bartholomew, C.H., Smith, S.J., and Woodfield, B.F.: Facile solvent-deficient synthesis of mesoporous γ-alumina with controlled pore structures. Microporous Mesoporous Mater. 165, 7078 (2013).CrossRefGoogle Scholar
Calvin, J.J., Asplund, M., Zhang, Y., Huang, B., and Woodfield, B.F.: Heat capacity and thermodynamic functions of γ-Al2O3. J. Chem. Thermodyn. 112, 7785 (2017).CrossRefGoogle Scholar
Calvin, J.J., Asplund, M., Zhang, Y., Huang, B., and Woodfield, B.F.: Heat capacity and thermodynamic functions of boehmite (AlOOH) and silica-doped boehmite. J. Chem. Thermodyn. 118, 338345 (2018).CrossRefGoogle Scholar
Asplund, M., Calvin, J.J., Zhang, Y., Huang, B., and Woodfield, B.F.: Heat capacity and thermodynamic functions of silica-doped γ-Al2O3. J. Chem. Thermodyn. 118, 165174 (2018).CrossRefGoogle Scholar
Spencer, E.C., Huang, B., Parker, S.F., Kolesnikov, A.I., Ross, N.L., and Woodfield, B.F.: The thermodynamic properties of hydrated γ-Al2O3 nanoparticles. J. Chem. Phys. 139, 244705 (2013).CrossRefGoogle ScholarPubMed
Navrotsky, A. and Kleppa, O.: Enthalpy of the anatase‐rutile transformation. J. Am. Ceram. Soc. 50, 626 (1967).CrossRefGoogle Scholar
Smith, S.J., Stevens, R., Liu, S., Li, G., Navrotsky, A., Boerio-Goates, J., and Woodfield, B.F.: Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability. Am. Mineral. 94, 236243 (2009).CrossRefGoogle Scholar
Levchenko, A.A., Li, G., Boerio-Goates, J., Woodfield, B.F., and Navrotsky, A.: TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chem. Mater. 18, 63246332 (2006).CrossRefGoogle Scholar
McHale, J., Auroux, A., Perrotta, A., and Navrotsky, A.: Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788791 (1997).CrossRefGoogle Scholar
McHale, J., Navrotsky, A., and Perrotta, A.: Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline γ-Al2O3 and α-Al2O3. J. Phys. Chem. B 101, 603613 (1997).CrossRefGoogle Scholar
Wang, H-W., Wesolowski, D.J., Proffen, T.E., Vlcek, L., Wang, W., Allard, L.F., Kolesnikov, A.I., Feygenson, M., Anovitz, L.M., and Paul, R.L.: Structure and stability of SnO2 nanocrystals and surface-bound water species. J. Am. Chem. Soc. 135, 68856895 (2013).CrossRefGoogle ScholarPubMed
Navrotsky, A.: Calorimetry of nanoparticles, surfaces, interfaces, thin films, and multilayers. J. Chem. Thermodyn. 39, 19 (2007).CrossRefGoogle Scholar
Navrotsky, A.: Energetics of nanoparticle oxides: Interplay between surface energy and polymorphism. Geochem. Trans. 4, 3437 (2003).CrossRefGoogle Scholar
Ushakov, S.V. and Navrotsky, A.: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87, 164103 (2005).CrossRefGoogle Scholar
Drazin, J.W. and Castro, R.H.: Water adsorption microcalorimetry model: Deciphering surface energies and water chemical potentials of nanocrystalline oxides. J. Phys. Chem. C 118, 1013110142 (2014).CrossRefGoogle Scholar
Castro, R.H. and Quach, D.V.: Analysis of anhydrous and hydrated surface energies of gamma-Al2O3 by water adsorption microcalorimetry. J. Phys. Chem. C 116, 2472624733 (2012).CrossRefGoogle Scholar
Boerio-Goates, J., Li, G., Li, L., Walker, T.F., Parry, T., and Woodfield, B.F.: Surface water and the origin of the positive excess specific heat for 7 nm rutile and anatase nanoparticles. Nano Lett. 6, 750754 (2006).CrossRefGoogle ScholarPubMed
Levchenko, A.A., Kolesnikov, A.I., Ross, N.L., Boerio-Goates, J., Woodfield, B.F., Li, G., and Navrotsky, A.: Dynamics of water confined on a TiO2 (anatase) surface. J. Phys. Chem. A 111, 1258412588 (2007).CrossRefGoogle ScholarPubMed
Boerio-Goates, J., Smith, S.J., Liu, S., Lang, B.E., Li, G., Woodfield, B.F., and Navrotsky, A.: Characterization of surface defect sites on bulk and nanophase anatase and rutile TiO2 by low-temperature specific heat. J. Phys. Chem. C 117, 45444550 (2013).CrossRefGoogle Scholar
Schliesser, J.M., Smith, S.J., Li, G., Li, L., Walker, T.F., Parry, T., Boerio-Goates, J., and Woodfield, B.F.: Heat capacity and thermodynamic functions of nano-TiO2 rutile in relation to bulk-TiO2 rutile. J. Chem. Thermodyn. 81, 311322 (2015).CrossRefGoogle Scholar
Schliesser, J.M., Smith, S.J., Li, G., Li, L., Walker, T.F., Parry, T., Boerio-Goates, J., and Woodfield, B.F.: Heat capacity and thermodynamic functions of nano-TiO2 anatase in relation to bulk-TiO2 anatase. J. Chem. Thermodyn. 81, 298310 (2015).CrossRefGoogle Scholar
Ma, Y., Castro, R.H., Zhou, W., and Navrotsky, A.: Surface enthalpy and enthalpy of water adsorption of nanocrystalline tin dioxide: Thermodynamic insight on the sensing activity. J. Mater. Res. 26, 848853 (2011).CrossRefGoogle Scholar
Castro, R.H., Ushakov, S.V., Gengembre, L., Gouvêa, D., and Navrotsky, A.: Surface energy and thermodynamic stability of γ-alumina: Effect of dopants and water. Chem. Mater. 18, 18671872 (2006).CrossRefGoogle Scholar
Navrotsky, A.: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89104 (1977).CrossRefGoogle Scholar
Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222241 (1997).CrossRefGoogle Scholar
Navrotsky, A.: Progress and new directions in calorimetry: A 2014 perspective. J. Am. Ceram. Soc. 97, 33493359 (2014).CrossRefGoogle Scholar
Ranade, M., Navrotsky, A., Zhang, H., Banfield, J., Elder, S., Zaban, A., Borse, P., Kulkarni, S., Doran, G., and Whitfield, H.: Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. U. S. A. 99(Suppl. 2), 64766481 (2002).CrossRefGoogle ScholarPubMed
White, G.K. and Collocott, S.: Heat capacity of reference materials: Cu and W. J. Phys. Chem. Ref. Data 13, 12511257 (1984).CrossRefGoogle Scholar
Gopal, E.: Specific Heats at Low Temperatures (International Cryogenics Monograph Series) (Plenum Press, New York, 1966).CrossRefGoogle Scholar
Calvin, J.J., Asplund, M., Akimbekov, Z., Ayoub, G., Katsenis, A.D., Navrotsky, A., Friščić, T., and Woodfield, B.F.: Heat capacity and thermodynamic functions of crystalline and amorphous forms of the metal organic framework zinc 2-ethylimidazolate, Zn(EtIm)2. J. Chem. Thermodyn. 116, 341351 (2018).CrossRefGoogle Scholar
Smith, S.J., Lang, B.E., Liu, S., Boerio-Goates, J., and Woodfield, B.F.: Heat capacities and thermodynamic functions of hexagonal ice from T = 0.5 K to T = 38 K. J. Chem. Thermodyn. 39, 712716 (2007).CrossRefGoogle Scholar
Lu, K.: Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng., R 16, 161221 (1996).CrossRefGoogle Scholar
Zhang, H. and Banfield, J.F.: A model for exploring particle size and temperature dependence of excess heat capacities of nanocrystalline substances. Nanostruct. Mater. 10, 185194 (1998).CrossRefGoogle Scholar
Shi, Q., Boerio-Goates, J., Woodfield, K., Rytting, M., Pulsipher, K., Spencer, E.C., Ross, N.L., Navrotsky, A., and Woodfield, B.F.: Heat capacity studies of surface water confined on cassiterite (SnO2) nanoparticles. J. Phys. Chem. C 116, 39103917 (2012).CrossRefGoogle Scholar
Sears, V.F.: Neutron scattering lengths and cross sections. Neutron News 3, 2637 (1992).CrossRefGoogle Scholar
Ross, N., Spencer, E., Levchenko, A., Kolesnikov, A., Wesolowski, D., Cole, D., Mamontov, E., and Vlcek, K.: Neutron scattering studies of surface water on metal oxide nanoparticles. In Neutron Applications in Earth, Energy and Environmental Sciences, L. Liyuan, R. Rinaldi, and H. Schober, eds. (Springer, New York, 2008); pp. 233254.Google Scholar
Spencer, E.C., Ross, N.L., Parker, S.F., Kolesnikov, A.I., Woodfield, B.F., Woodfield, K., Rytting, M., Boerio-Goates, J., and Navrotksy, A.: Influence of particle size and water coverage on the thermodynamic properties of water confined on the surface of SnO2 cassiterite nanoparticles. J. Phys. Chem. C 115, 2110521112 (2011).CrossRefGoogle Scholar
Ross, N.L., Spencer, E.C., Levchenko, A.A., Kolesnikov, A.I., Wesolowski, D.J., Cole, D.R., Mamontov, E., and Vlcek, L.: Studies of mineral-water surfaces. In Neutron Applications in Earth, Energy and Environmental Sciences, Liyuan, L., Rinaldi, R., and Schober, H., eds. (Springer, New York, 2009); pp. 235256.CrossRefGoogle Scholar
Spencer, E.C., Levchenko, A.A., Ross, N.L., Kolesnikov, A.I., Boerio-Goates, J., Woodfield, B.F., Navrotsky, A., and Li, G.: Inelastic neutron scattering study of confined surface water on rutile nanoparticles. J. Phys. Chem. A 113, 27962800 (2009).CrossRefGoogle ScholarPubMed
Morterra, C.: An infrared spectroscopic study of anatase properties. Part 6—Surface hydration and strong Lewis acidity of pure and sulphate-doped preparations. J. Chem. Soc., Faraday Trans. 1 84, 16171637 (1988).CrossRefGoogle Scholar
Bezrodna, T., Puchkovska, G., Shymanovska, V., Baran, J., and Ratajczak, H.: IR-analysis of H-bonded H2O on the pure TiO2 surface. J. Mol. Struct. 700, 175181 (2004).CrossRefGoogle Scholar
Ionescu, A., Allouche, A., Aycard, J-P., Rajzmann, M., and Hutschka, F.: Study of γ-alumina surface reactivity: Adsorption of water and hydrogen sulfide on octahedral aluminum sites. J. Phys. Chem. B 106, 93599366 (2002).CrossRefGoogle Scholar
Mamontov, E., Vlcek, L., Wesolowski, D.J., Cummings, P.T., Wang, W., Anovitz, L., Rosenqvist, J., Brown, C., and Garcia Sakai, V.: Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations. J. Phys. Chem. C 111, 43284341 (2007).CrossRefGoogle Scholar
Mamontov, E., Wesolowski, D.J., Vlcek, L., Cummings, P.T., Rosenqvist, J., Wang, W., and Cole, D.R.: Dynamics of hydration water on rutile studied by backscattering neutron spectroscopy and molecular dynamics simulation. J. Phys. Chem. C 112, 1233412341 (2008).CrossRefGoogle Scholar
Mamontov, E., Vlcek, L., Wesolowski, D.J., Cummings, P.T., Rosenqvist, J., Wang, W., Cole, D.R., Anovitz, L.M., and Gasparovic, G.: Suppression of the dynamic transition in surface water at low hydration levels: A study of water on rutile. Phys. Rev. E 79, 051504 (2009).CrossRefGoogle Scholar
Koparde, V.N. and Cummings, P.T.: Molecular dynamics study of water adsorption on TiO2 nanoparticles. J. Phys. Chem. C 111, 69206926 (2007).CrossRefGoogle Scholar
Vlček, L. and Cummings, P.T.: Adsorption of water on TiO2 and SnO2 surfaces: Molecular dynamics study. Collect. Czech. Chem. Commun. 73, 575589 (2008).CrossRefGoogle Scholar
Redfern, P., Zapol, P., Curtiss, L., Rajh, T., and Thurnauer, M.: Computational studies of catechol and water interactions with titanium oxide nanoparticles. J. Phys. Chem. B 107, 1141911427 (2003).CrossRefGoogle Scholar
Salameh, S., Schneider, J., Laube, J., Alessandrini, A., Facci, P., Seo, J.W., Ciacchi, L.C., and Mädler, L.: Adhesion mechanisms of the contact interface of TiO2 nanoparticles in films and aggregates. Langmuir 28, 1145711464 (2012).CrossRefGoogle ScholarPubMed
Laube, J., Salameh, S., Kappl, M., Mädler, L., and Colombi Ciacchi, L.: Contact forces between TiO2 nanoparticles governed by an interplay of adsorbed water layers and roughness. Langmuir 31, 1128811295 (2015).CrossRefGoogle ScholarPubMed
Gercher, V.A. and Cox, D.F.: Water adsorption on stoichiometric and defective SnO2(110) surfaces. Surf. Sci. 322, 177184 (1995).CrossRefGoogle Scholar
Kumar, N., Kent, P.R., Bandura, A.V., Kubicki, J.D., Wesolowski, D.J., Cole, D.R., and Sofo, J.O.: Faster proton transfer dynamics of water on SnO2 compared to TiO2. J. Chem. Phys. 134, 044706 (2011).CrossRefGoogle Scholar
Arrouvel, C., Digne, M., Breysse, M., Toulhoat, H., and Raybaud, P.: Effects of morphology on surface hydroxyl concentration: A DFT comparison of anatase–TiO2 and γ-alumina catalytic supports. J. Catal. 222, 152166 (2004).CrossRefGoogle Scholar
Digne, M., Sautet, P., Raybaud, P., Euzen, P., and Toulhoat, H.: Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces. J. Catal. 226, 5468 (2004).CrossRefGoogle Scholar
Asplund, M., Calvin, J.J., Zhang, Y., Huang, B., and Woodfield, B.F.: Heat capacity and thermodynamic functions of γ-Al2O3 synthesized from Al(NO3)3. J. Chem. Thermodyn. 132, 295305 (2019).CrossRefGoogle Scholar