Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T17:39:18.229Z Has data issue: false hasContentIssue false

Reverse Monte Carlo structural model for a zirconium-based metallic glass incorporating fluctuation microscopy medium-range order data

Published online by Cambridge University Press:  31 January 2011

Jinwoo Hwang*
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706-1595
Paul M. Voyles
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706-1595
*
a) Address all correspondence to this author. e-mail: jhwang3@wisc.edu
Get access

Abstract

We used reverse Monte Carlo (RMC) modeling to simulate the atomic structure of a Zr-based bulk metallic glass (BMG), incorporating short-range structural data from the electron diffraction total reduced density function G(r) and medium-range structural data from fluctuation electron microscopy (FEM). Including the FEM data created within the model loosely ordered planar atomic arrangements covering regions ∼1 nm in diameter without degrading the agreement with G(r). RMC refinement against only G(r) produced no agreement with FEM. Improved simulations are needed to create fully realistic BMG structures, but these results show that including FEM in RMC further constrains the structure compared with G(r) data alone and that the FEM signal in real materials is likely to arise from pseudo-planar arrangements of atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Slipenyuk, A. and Eckert, J.: Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55 Cu30Al10Ni5 metallic glass. Scr. Mater. 50, 39 (2004).CrossRefGoogle Scholar
2.Fan, P.K. Cang, Liaw, T.W., Wilson, W., Dmowski, W., Choo, H., Liu, C.T., Richardson, J.W., and Th. Proffen: Structural model for bulk amorphous alloys. Appl. Phys. Lett. 89, 111905 (2006).CrossRefGoogle Scholar
3.Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
4.Falk, M.L. and Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).CrossRefGoogle Scholar
5.Schuh, A.C., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
6.Adam, G. and Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
7.Kivelson, D., Kivelson, S.A., Zhao, X.L., Nussinov, Z., and Tarjus, G.: A thermodynamic theory of supercooled liquids. Physica A 219, 27 (1995).CrossRefGoogle Scholar
8.Sheng, H.W., Luo, W.K., Alamgir, F.M., Mai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).CrossRefGoogle ScholarPubMed
9.Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R., and Herlach, D.M.: Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507 (2002).CrossRefGoogle ScholarPubMed
10.Lee, G.W., Gangopadhyay, A.K., Kelton, K.F., Hyers, R.W., Rathz, T.J., Rogers, J.R., and Robinson, D.S.: Difference in icosahedral short-range order in early and late transition metal liquids. Phys. Rev. Lett. 93, 037802 (2004).CrossRefGoogle ScholarPubMed
11.Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).CrossRefGoogle ScholarPubMed
12.Fischer, H.E., Barnes, A.C., and Salmon, P.S.: Neutron and x-ray diffraction studies of liquids and glasses. Rep. Prog. Phys. 69, 233 (2006).CrossRefGoogle Scholar
13.Hafner, J., Egami, T., Aur, S., and Giessen, B.C.: The structure of calcium-aluminium glasses: X-ray diffraction and computer simulation studies. J. Phys. F: Met. Phys. 17, 1807 (1987).CrossRefGoogle Scholar
14.Takagi, T., Okubo, T., Hirotsu, Y., Murty, B.S., Hono, K., and Shindo, D.: Local structure of amorphous Zr70Pd30 alloy studied by electron diffraction. Appl. Phys. Lett. 79, 485 (2001).CrossRefGoogle Scholar
15.Sheng, H.W., Liu, H.Z., Cheng, Y.Q., Wen, J., Lee, P.L., Luo, W.K., Shastri, S.D., and Ma, E.: Polyamorphism in a metallic glass. Nat. Mater. 6, 192 (2007).CrossRefGoogle Scholar
16.Voyles, P.M. and Abelson, J.R.: Medium-range order in amorphous silicon measured by fluctuation electron microscopy. Sol. Energy Mater. Sol. Cells 78, 85 (2003).CrossRefGoogle Scholar
17.Rehr, J.J. and Albers, R.C.: Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621 (2000).CrossRefGoogle Scholar
18.Waseda, Y.: Anomalous X-Ray Scattering for Materials Characterization (Springer, Berlin, 2002).CrossRefGoogle Scholar
19.Elliot, S.R.: Medium-range structural order in covalent amorphous solids. Nature 354, 445 (1991).CrossRefGoogle Scholar
20.Gaskell, P.H. and Wallis, D.J.: Medium-range order in silica, the canonical network glass. Phys. Rev. Lett. 76, 66 (1996).CrossRefGoogle ScholarPubMed
21.Ma, D., Stoica, A.D., and Wang, X-L.: Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater. 8, 30 (2009).CrossRefGoogle ScholarPubMed
22.Murty, B.S. and Hono, K.: Nanoquasicrystallization of Zr-based metallic glasses. Mater. Sci. Eng., A 312, 253 (2001).CrossRefGoogle Scholar
23.Hirata, A., Hirotsu, Y., Nieh, T.G., Ohkubo, T., and Tanaka, N.: Direct imaging of local atomic ordering in a Pd–Ni–P bulk metallic glass using Cs-corrected transmission electron microscopy. Ultramicroscopy 107, 116 (2007).CrossRefGoogle Scholar
24.Treacy, M.M.J., Gibson, J.M., Fan, L., Paterson, D.J., and McNulty, I.: Fluctuation microscopy: A probe of medium range order. Rep. Prog. Phys. 68, 2899 (2005).CrossRefGoogle Scholar
25.Gibson, J.M., Treacy, M.M.J., and Voyles, P.M.: Atom pair persistence in disordered materials from fluctuation microscopy. Ultramicroscopy 83, 169 (2000).CrossRefGoogle ScholarPubMed
26.Hwang, J., Cao, H., and Voyles, P.M.: Nanometer-scale structural relaxation in Zr-based bulk metallic glass. Mater. Res. Soc. Symp. Proc. 1048, Z05–04 (2008).Google Scholar
27.Hufnagel, T.C., Fan, C., Ott, R.T., Li, J., and Brennan, S.: Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics 10, 1163 (2002).CrossRefGoogle Scholar
28.Sordelet, D.J., Ott, R.T., Li, M.Z., Wang, S.Y., Wang, C.Z., Besser, M.F., Liu, A.C.Y., and Kramer, M.J.: Structure of Zrx Pt100-x (73 ≤x ≤77) metallic glasses. Metall. Mater. Trans. A 39, 1908 (2008).CrossRefGoogle Scholar
29.Wen, J., Cheng, Y.Q., Wang, J.Q., and Ma, E.: Distinguishing medium-range order in metallic glass using fluctuation electron microscopy: A theoretical study using atomic models. J. Appl. Phys. 105, 043519 (2009).CrossRefGoogle Scholar
30.Stratton, W.G., Hamann, J., Perepezko, J.H., Mao, X., Khare, S.V., and Voyles, P.M.: Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy. Appl. Phys. Lett. 86, 141910 (2005).CrossRefGoogle Scholar
31.Voyles, P.M., Zotov, N., Nakhmanson, S.M., Drabold, D.A., Gibson, J.M., Treacy, M.M.J., and Keblinski, P.: Structure and physical properties of paracrystalline atomistic models of amorphous silicon. J. Appl. Phys. 90, 9 (2001).CrossRefGoogle Scholar
32.Keen, D.A. and Mcgreevy, R.L.: Structural modelling of glasses using reverse Monte Carlo simulation. Nature 344, 423 (1990).CrossRefGoogle Scholar
33.McGreevy, R.L.: Reverse Monte Carlo modeling. J. Phys. Condens. Matter 13, R877 (2001).CrossRefGoogle Scholar
34.Biswas, P., Atta-Fynn, R., and Drabold, D.A.: Reverse Monte Carlo modeling of amorphous silicon. Phys. Rev. B 69, 195207 (2004).CrossRefGoogle Scholar
35.Biswas, P., Tafen, D.N., Atta-Fynn, R., and Drabold, D.: The inclusion of experimental information in first principles modelling of materials. J. Phys. Condens. Matter 16, S5173 (2004).CrossRefGoogle Scholar
36.Wang, D., Tan, H., and Li, Y.: Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system: A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 (2005).CrossRefGoogle Scholar
37.Chen, H. and Zuo, J-M.: Structure and phase separation of Ag–Cu alloy thin films. Acta Mater. 55, 1617 (2007).CrossRefGoogle Scholar
38.Kirkland, E.J.: Advanced Computing in Electron Microscopy (Plenum, NY, 1998).CrossRefGoogle Scholar
39.Cockayne, D.J.H. and Mckenzie, D.R.: Electron diffraction analysis of polycrystalline and amorphous thin films. Acta Crystallogr., Sect. A 44, 870 (1988).CrossRefGoogle Scholar
40.Voyles, P.M.: Fluctuation Electron Microscopy of Medium-Range Order in Amorphous Silicon (Dissertation, University of Illinois at Urbana-Champaign, 2001).Google Scholar
41.Puthoff, J. and Stone, D.S.: Unpublished data.Google Scholar
42.Miracle, D.B.: The efficient cluster packing model: An atomic structural model for metallic glasses. Acta Mater. 54, 4317 (2006).CrossRefGoogle Scholar
43.Hall, L.E. and Mckenzie, D.R.: Coordination number determination in binary alloys using electron diffraction. Philos. Mag. A 80, 525 (2000).CrossRefGoogle Scholar
44.Dash, R.K., Voyles, P.M., Gibson, J.M., Treacy, M.M.J., and Keblinski, P.: A quantitative measure of medium-range order in amorphous materials from transmission electron micrographs. J. Phys. Condens. Matter 15, S2425 (2003).CrossRefGoogle Scholar
45.Voyles, P.M. and Muller, D.A.: Fluctuation microscopy in the STEM. Ultramicroscopy 93, 147 (2002).CrossRefGoogle ScholarPubMed
46.Stratton, W.G. and Voyles, P.M.: Comparison of fluctuation electron microscopy theories and experimental methods. J. Phys. Condens. Matter 19, 455203 (2007).CrossRefGoogle Scholar
47.Freeman, L.A., Howie, A., Mistry, A.B., and Gaskell, P.H.: The Structure of Non-Crystallized Materials (Taylor and Francis, London, UK, 1976).Google Scholar
48.Stratton, W.G. and Voyles, P.M.: A phenomenological model of fluctuation electron microscopy for a nanocrystal/amorphous composite. Ultramicroscopy 108, 727 (2008).CrossRefGoogle ScholarPubMed
47.Freeman, L.A., Howie, A., Mistry, A.B., and Gaskell, P.H.: The Structure of Non-Crystallized Materials (Taylor and Francis, London, UK, 1976).Google Scholar
48.Stratton, W.G. and Voyles, P.M.: A phenomenological model of fluctuation electron microscopy for a nanocrystal/amorphous composite. Ultramicroscopy 108, 727 (2008).CrossRefGoogle ScholarPubMed
49.Opletal, G., Petersen, T.C., McCulloch, D.G., Snook, I.K., and Yarovsky, I.: The structure of disordered carbon solids studies using a hybrid reverse Monte Carlo algorithm. J. Phys. Condens. Matter 17, 2605 (2005).CrossRefGoogle Scholar
50.Zhao, G., Buseck, P.R., A. Rougée, and Treacy, M.M.J.: Mediumrange order in molecular materials: Fluctuation electron microscopy for detecting fullerenes in disordered carbons. Ultramicroscopy 109, 177 (2009).CrossRefGoogle ScholarPubMed
51.Suzuki, Y., Haimovich, J., and Egami, T.: Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. Phys. Rev. B 35, 2162 (1987).Google Scholar
52.Mendelev, M.I., Sordelet, D.J., and Kramer, M.J.: Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses. J. Appl. Phys. 102, 043501 (2007).CrossRefGoogle Scholar