Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T23:35:59.379Z Has data issue: false hasContentIssue false

Resorcinol-formaldehyde derived carbon xerogels: A promising anode material for lithium-ion battery

Published online by Cambridge University Press:  29 December 2017

Manohar Kakunuri
Affiliation:
Centre for Carbon Materials, International Advance Research Centre for Powder Metallurgy and New Materials, Hyderabad 500005, Telangana, India
Chandra Shekhar Sharma*
Affiliation:
Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, Telangana, India
*
a)Address all correspondence to this author. e-mail: cssharma@iith.ac.in
Get access

Abstract

Organic gels obtained by sol–gel polycondensation reaction followed by subcritical drying in ambient conditions are termed as xerogels which are pyrolyzed to yield carbon xerogels. Resorcinol formaldehyde (RF) derived carbon xerogels have received considerable attention due to their higher carbon yield and ease of tuning their microstructure and therefore physiochemical properties. Recent advances in the synthesis of carbon xerogels have allowed porous as well as non-porous but large external surface area morphologies. Further efforts have been made about increasing the surface area by activation or changing the microstructure by doping with foreign elements. These advances in the area of carbon xerogels synthesis led to their use as high performance anode materials for Li ion batteries recently. This review summarizes these recent studies on electrochemical performance of carbon xerogels to clearly demonstrate their potential as high capacity anode material for Li ion batteries. Notably, given the potential not only for Li ion batteries but also for latest sodium-ion batteries and super-capacitors, this review provides a much needed attention of scientific community to so far unnoticed carbon xerogel materials.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Tianyu Liu

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Tarascon, J.M. and Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).Google Scholar
Sacken, U.V., Nodwell, E., Sundher, A., and Dahn, J.R.: Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J. Power Sources 54, 240 (1995).Google Scholar
Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Proietti Zaccaria, R., and Capiglia, C.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014).Google Scholar
Shi, H., Barker, J., Saydi, M.Y., Koksbang, R., and Morris, L.: Graphite structure and lithium intercalation. J. Power Sources 68, 291 (1997).Google Scholar
Zaghib, K., Nadeau, G., and Kinoshita, K.: Effect of graphite particle size on irreversible capacity loss. J. Electrochem. Soc. 147, 2110 (2000).Google Scholar
Ridgway, P., Zheng, H., Bello, A.F., Song, X., Xun, S., Chong, J., and Battaglia, V.: Comparison of cycling performance of lithium ion cell anode graphites. J. Electrochem. Soc. 159, A520 (2012).Google Scholar
Endo, M., Kim, C., Nishimura, K., Fujino, T., and Miyashita, K.: Recent development of carbon materials for Li ion batteries. Carbon 38, 183 (2000).Google Scholar
Dahn, J.R., Zheng, T., Liu, Y., and Xue, J.S.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590 (1995).Google Scholar
Franklin, R.E.: Crystallite growth in graphitizing and non-graphitizing carbons. Proc. R. Soc. London 209, 195 (1951).Google Scholar
Liu, Y., Xue, J.S., Zheng, T., and Dahn, J.R.: Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34, 193 (1996).Google Scholar
Sato, K., Noguchi, M., Demachi, A., Oki, N., and Endo, M.: A mechanism of lithium storage in disordered carbons. Science 264, 556 (1994).Google Scholar
Matsumura, Y., Wang, S., Kasuh, T., and Maeda, T.: The dependence of reversible capacity of lithium ion rechargeable batteries on the crystal structure of carbon electrodes. Synth. Met. 71, 1755 (1995).Google Scholar
Zheng, T., Liu, Y., Fuller, E.W., Tseng, S., Von Sacken, U., and Dahn, J.R.: Lithium insertion in high capacity carbonaceous materials. J. Electrochem. Soc. 142, 2581 (1995).Google Scholar
Wang, S-C., Yang, J., Zhou, X-Y., and Xie, J.: The contribution of functional groups in carbon nanotube electrodes to the electrochemical performance. Electron. Mater. Lett. 10, 241 (2014).Google Scholar
Kalyani, P. and Anitha, A.: Biomass carbon & its prospects in electrochemical energy systems. Int. J. Hydrogen Energy 38, 4034 (2013).Google Scholar
Pekala, R.W.: Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221 (1989).CrossRefGoogle Scholar
Czakkel, O., Marthi, K., Geissler, E., and Laszlo, K.: Influence of drying on the morphology of resorcinol-formaldehyde-based carbon gels. Microporous Mesoporous Mater. 86, 124 (2005).Google Scholar
Al-Muhtaseb, S.A. and Ritter, J.A.: Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 15, 101 (2003).Google Scholar
Kakunuri, M., Vennamalla, S., and Sharma, C.S.: Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol-formaldehyde and their use as anode material for lithium-ion battery. RSC Adv. 5, 4747 (2015).Google Scholar
Wu, D., Fu, R., Dresselhaus, M.S., and Dresselhaus, G.: Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol–gel polymerization method. Carbon 44, 675 (2006).Google Scholar
Nian-Ping, L., Jun, S., Da-Yong, G., Dong, L., Xiao-Wei, Z., and Ya-Jie, L.: Effect of carbon aerogel activation on electrode lithium insertion performance. Acta Phys.-Chim. Sin. 29, 966 (2013).Google Scholar
Yang, X., Wei, C., and Zhang, G.: Activated carbon aerogels with developed mesoporosity as high-rate anodes in lithium-ion batteries. J. Mater. Sci. 51, 5565 (2016).Google Scholar
Kruk, M., Dufour, B., Celer, E.B., Kowalewski, T., Jaroniec, M., and Matyjaszewski, K.: Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor. J. Phys. Chem. B 109, 9216 (2005).Google Scholar
Han, S., Lee, K.T., Oh, S.M., and Hyeon, T.: The effect of silica template structure on the pore structure of mesoporous carbons. Carbon 41, 1049 (2003).Google Scholar
Zhou, J., Ji, Y., He, J., Zhang, C., and Zhao, G.: Enhanced mesoporosity and capacitance property of spherical carbon aerogel prepared by associating Mg(OH)2 with non-ionic surfactant. Microporous Mesoporous Mater. 114, 424 (2008).Google Scholar
Kowalewski, T., Tsarevsky, N.V., and Matyjaszewski, K.: Nanostructured carbon arrays from block copolymers of polyacrylonitrile. J. Am. Chem. Soc. 124, 10632 (2002).Google Scholar
Ozaki, J., Endo, N., Ohizumi, W., Igarashi, K., Nakahara, M., Oya, A., Yoshida, S., and Iizuka, T.: Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 35, 1031 (1997).Google Scholar
Pierre, A.C. and Pajonk, G.M.: Chemistry of aerogels and their applications. Chem. Rev. 102, 4243 (2002).Google Scholar
Li, W., Lu, A., and Guo, S.: Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde. Carbon 39, 1989 (2001).CrossRefGoogle Scholar
Tamon, H., Ishizaka, H., Mikami, M., and Okazaki, M.: Porous structure of organic and carbon aerogels synthesized by sol–gel polycondensation of resorcinol with formaldehyde. Carbon 35, 791 (1997).Google Scholar
Zhu, Y., Hu, H., Li, W., and Zhang, X.: Resorcinol-formaldehyde based porous carbon as an electrode material for supercapacitors. Carbon 45, 160 (2007).Google Scholar
Pekala, R.W., Alvisto, C.T., Lu, X., Gross, J., and Fricke, J.: New organic aerogels based upon a phenolic–furfural reaction. J. Non-Cryst. Solids 188, 34 (1995).Google Scholar
Zhu, Y., Xiang, X., Liu, E., Wu, Y., Xie, H., Wu, Z., and Tian, Y.: An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode. Mater. Res. Bull. 47, 2045 (2012).Google Scholar
Wu, D., Fu, R., Sun, Z., and Yu, Z.: Low-density organic and carbon aerogels from the sol–gel polymerization of phenol with formaldehyde. J. Non-Cryst. Solids 351, 915 (2005).Google Scholar
Gelman, R.A., Harrington, J.C., and Vaynberg, K.A.: Insight into the inversion mechanism of an inverse polymer emulsion. Langmuir 24, 12727 (2008).Google Scholar
Kim, S., Yamamoto, T., Endo, A., Ohmori, T., and Nakaiwa, M.: Influence of nonionic surfactant concentration on physical characteristics of resorcinol-formaldehyde carbon cryogel microspheres. J. Ind. Eng. Chem. 12, 484 (2006).Google Scholar
Sharma, C.S., Kulkarni, M.M., Sharma, A., and Madou, M.: Synthesis of carbon xerogel particles and fractal-like structures. Chem. Eng. Sci. 64, 1536 (2009).Google Scholar
Yamamoto, T., Endo, A., Ohmori, T., and Nakaiwa, M.: The effects of different synthetic conditions on the porous properties of carbon cryogel microspheres. Carbon 43, 1231 (2005).Google Scholar
Wang, X., Wang, X., Liu, L., Bai, L., An, H., Zheng, L., and Yi, L.: Preparation and characterization of carbon aerogel microspheres by an inverse emulsion polymerization. J. Non-Cryst. Solids 357, 793 (2011).Google Scholar
Sharma, C.S., Upadhyay, D.K., and Sharma, A.: Controlling the morphology of resorcinol-formaldehyde-based carbon xerogels by sol concentration, shearing, and surfactants. Ind. Eng. Chem. Res. 48, 8030 (2009).Google Scholar
Tashima, D., Taniguchi, M., Fujikawa, D., Kijima, T., and Otsubo, M.: Performance of electric double layer capacitors using nanocarbons produced from nanoparticles of resorcinol-formaldehyde polymers. Mater. Chem. Phys. 115, 69 (2009).Google Scholar
Job, N., Pirard, R., Marien, J., and Pirard, J.: Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon 42, 619 (2004).Google Scholar
Lei, Q., Song, H., Zhou, D., Zhang, S., and Chen, X.: Morphology control and supercapacitor performance of resorcinol-formaldehyde-based carbon particles upon Ni loading in an inverse emulsion system. RSC Adv. 5, 78526 (2015).Google Scholar
Bagheri-Tar, F., Sahimi, M., and Tsotsis, T.T.: Preparation of polyetherimide nanoparticles by an electrospray technique. Ind. Eng. Chem. Res. 46, 3348 (2007).Google Scholar
Sharma, C.S., Patil, S., Saurabh, S., Sharma, A., and Venkataraghavan, R.: Resorcinol-formaldehyde based carbon nanospheres by electrospraying. Bull. Mater. Sci. 32, 239 (2009).Google Scholar
Chen, D.R., Pui, D.Y.H., and Kaufman, S.L.: Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 µm diameter range. J. Aerosol Sci. 26, 963 (1995).Google Scholar
Sas, I., Gorga, R.E., Joines, J.A., and Thoney, K.A.: Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. J. Polym. Sci., Part B: Polym. Phys. 50, 824 (2012).Google Scholar
Huang, Z., Zhang, Y., Kotaki, M., and Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223 (2003).Google Scholar
Mitra, J., Jain, S., Ahutosh, S., and Basu, B.: Patterned growth and differentiation of neural cells on polymer derived carbon substrates with micro/nano structures in vitro. Carbon 65, 140 (2013).CrossRefGoogle Scholar
Mamidi, S., Kakunuri, M., and Sharma, C.S.: Resorcinol formaldehyde based carbon fibers as anode material for lithium ion batteries. ECS Trans. 77, 331 (2017).Google Scholar
Obraztsov, A.N., Obraztsova, E.A., Tyurnina, A.V., and Zolotukhin, A.A.: Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017 (2007).Google Scholar
Kakunuri, M. and Sharma, C.S.: Effect of pyrolysis temperature on electrochemical performance of SU-8 photoresist derived carbon films. ECS Trans. 66, 57 (2015).Google Scholar
Tao, Y., Endo, M., Ohsawa, R., Kanoh, H., and Kaneko, K.: High capacitance carbon-based xerogel film produced without critical drying. Appl. Phys. Lett. 93, 193112 (2008).Google Scholar
Sharma, C.S., Katepalli, H., Sharma, A., Teixidor, G.T., and Madou, M.J.: Fabrication of resorcinol-formaldehyde xerogel based high aspect ratio 3-d hierarchical C-MEMS structures. ECS Trans. 61, 45 (2014).Google Scholar
Jia, X., Dai, B., Zhu, Z., Wang, J., Qiao, W., Long, D., and Ling, L.: Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying. Carbon 108, 551 (2016).Google Scholar
Hasegawa, G., Kanamori, K., Kannari, N., Ozaki, J.I., Nakanishi, K., and Abe, T.: Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. J. Power Sources 318, 41 (2016).Google Scholar
Lee, K.T., Lytle, J.C., Ergang, N.S., Oh, S.M., and Stein, A.: Synthesis and rate performance of monolithic macroporous carbon electrodes for lithium-ion secondary batteries. Adv. Funct. Mater. 15, 547 (2005).CrossRefGoogle Scholar
Long, J.W., Dunn, B., Rolison, D.R., and White, H.S.: Three-dimensional battery architectures. Chem. Rev. 104, 4463 (2004).Google Scholar
Teixidor, G.T., Zaouk, R.B., Park, B.Y., and Madou, M.J.: Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries. J. Power Sources 183, 730 (2008).Google Scholar
Sharma, C.S., Verma, A., Kulkarni, M.M., Upadhyay, D.K., and Sharma, A.: Microfabrication of carbon structures by pattern miniaturization in resorcinol-formaldehyde gel. ACS Appl. Mater. Interfaces 2, 2193 (2010).Google Scholar
Park, B.Y., Zaouk, R., Wang, C., and Madou, M.J.: A case for fractal electrodes in electrochemical applications. J. Electrochem. Soc. 154, P1 (2007).Google Scholar
Pandolfo, A.G. and Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157, 11 (2006).Google Scholar
Yuan, X., Chao, Y., Ma, Z., and Deng, X.: Preparation and characterization of carbon xerogel (CX) and CX–SiO composite as anode material for lithium-ion battery. Electrochem. Commun. 9, 2591 (2007).Google Scholar
Zhang, Z. and Yin, L.: Polyvinyl pyrrolidone wrapped Sn nanoparticles/carbon xerogel composite as anode material for high performance lithium ion batteries. Electrochim. Acta 212, 594 (2016).Google Scholar
Hasegawa, T., Mukai, S.R., Shirato, Y., and Tamon, H.: Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes. Carbon 42, 2573 (2004).Google Scholar
Gopalakrishna, K.M., Kakunuri, M., and Sharma, C.S.: Effect of disorder induced by ball milling on the electrochemical performance of catalytically graphitized carbon xerogel as anode for lithium ion batteries. ECS Trans. 66, 41 (2015).Google Scholar
Rey-raap, N., Piedboeuf, M.C., Arenillas, A., Menéndez, J.A., Léonard, A.F., and Job, N.: Aqueous and organic inks of carbon xerogels as models for studying the role of porosity in lithium-ion battery electrodes. Mater. Des. 109, 282 (2016).Google Scholar
Piedboeuf, M.C., Léonard, A.F., Deschamps, F.L., and Job, N.: Carbon xerogels as model materials: Toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries. J. Mater. Sci. 51, 4358 (2016).Google Scholar
Shilpa, , Katiyar, S., Kalaiselvi, N., and Sharma, A.: Facile synthesis of hierarchical porous carbon monolith: A free-standing anode for Li-ion battery with enhanced electrochemical performance. Ind. Eng. Chem. Res. 55, 11818 (2016).Google Scholar
Liu, X., Li, S., Mei, J., Lau, W., Mi, R., Li, Y., Liu, H., and Liu, L.: From melamine–resorcinol-formaldehyde to nitrogen-doped carbon xerogels with micro- and meso-pores for lithium batteries. J. Mater. Chem. A 2, 14429 (2014).Google Scholar
Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., and Ajayan, P.M.: Synthesis of nitrogen-doped graphene films for lithium ion battery application. ACS Nano 4, 6337 (2010).Google Scholar
Ayala, P., Arenal, R., Rümmeli, M., Rubio, A., and Pichler, T.: The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48, 575 (2010).Google Scholar
Zhou, Z., Gao, X., Yan, J., Song, D., and Morinaga, M.: A first-principles study of lithium absorption in boron-or nitrogen-doped single-walled carbon nanotubes. Carbon 42, 2677 (2004).CrossRefGoogle Scholar
Wu, Z.S., Ren, W., Xu, L., Li, F., and Cheng, H.M.: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5, 5463 (2011).CrossRefGoogle ScholarPubMed
Borchardt, L., Oschatz, M., and Kaskel, S.: Tailoring porosity in carbon materials for supercapacitor applications. Mater. Horiz., 1 157 (2014).Google Scholar
Maldonado-Hodar, F.J., Moreno-Castilla, C., Rivera-Utrilla, J., Hanzawa, Y., and Yamada, Y.: Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16, 4367 (2000).CrossRefGoogle Scholar
Kakunuri, M., Kali, S., and Sharma, C.S.: Catalytic graphitization of resorcinol-formaldehyde xerogel and its effect on lithium ion intercalation. J. Anal. Appl. Pyrolysis 117, 317 (2016).CrossRefGoogle Scholar
Zhang, H., Xu, H., and Zhao, C.: Synthesis of morphology-controlled carbon hollow particles by carbonization of resorcinol-formaldehyde precursor microspheres and applications in lithium-ion batteries. Mater. Chem. Phys. 133, 429 (2012).Google Scholar
Kubota, K. and Komaba, S.: Review—Practical issues and future perspective for Na-ion batteries. J. Electrochem. Soc. 162, A2538 (2015).Google Scholar
Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-González, J., and Rojo, T.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884 (2012).Google Scholar
Alcántara, R., Lavela, P., Ortiz, G.F., and Tirado, J.L.: Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem. Solid-State Lett. 8, A222 (2005).Google Scholar
Hasegawa, G., Kanamori, K., Kannari, N., Ozaki, J-I, Nakanishi, K., and Abe, T.: Hard carbon anodes for Na-ion batteries: Toward a practical use. ChemElectroChem 2, 1917 (2015).Google Scholar
Liu, J., Liu, H., Yang, T., Wang, G., and Tade, M.O.: Mesoporous carbon with large pores as anode for Na-ion batteries. Chin. Sci. Bull. 59, 2186 (2014).Google Scholar
Qu, Y., Zhang, Z., Du, K., Chen, W., Lai, Y., Liu, Y., and Li, J.: Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries. Carbon 105, 103 (2016).Google Scholar
Murray, D.B. and Hayes, J.G.: Cycle testing of supercapacitors for long-life robust applications. IEEE Trans. Power Electron. 30, 2505 (2015).Google Scholar
Inagaki, M., Konno, H., and Tanaike, O.: Carbon materials for electrochemical capacitors. J. Power Sources 195, 7880 (2010).Google Scholar
Faraji, S. and Ani, F.N.: The development supercapacitor from activated carbon by electroless plating–A review. Renewable Sustainable Energy Rev. 42, 823 (2015).Google Scholar
Halama, A., Szubzda, B., and Pasciak, G.: Carbon aerogels as electrode material for electrical double layer supercapacitors—Synthesis and properties. Electrochim. Acta 55, 7501 (2010).Google Scholar
Li, J., Wang, X., Wang, Y., Huang, Q., Dai, C., Gamboa, S., and Sebastian, P.J.: Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors. J. Non-Cryst. Solids 354, 19 (2008).CrossRefGoogle Scholar
Davies, A. and Yu, A.: Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene. Can. J. Chem. Eng. 89, 1342 (2011).Google Scholar
Kwon, S.H., Lee, E., Kim, B.S., Kim, S.G., Lee, B.J., Kim, M.S., and Jung, J.C.: Preparation of activated carbon aerogel and its application to electrode material for electric double layer capacitor in organic electrolyte: Effect of activation temperature. Korean J. Chem. Eng. 32, 248 (2015).Google Scholar
Shen, T., Wu, X., and Zhang, Z.: Effect of the microstructure of carbon xerogels by using CTAB as template on their electrochemical performance. J. Sol-Gel Sci. Technol. 83, 81 (2017).Google Scholar
Mezzavilla, S., Zanella, C., Aravind, P.R., Della Volpe, C., and Sorarù, G.D.: Carbon xerogels as electrodes for supercapacitors. The influence of the catalyst concentration on the microstructure and on the electrochemical properties. J. Mater. Sci. 47, 7175 (2012).Google Scholar