Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T23:08:03.893Z Has data issue: false hasContentIssue false

Relating mechanical testing and microstructural features of polysilicon thin films

Published online by Cambridge University Press:  31 January 2011

S. Jayaraman
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
R. L. Edwards
Affiliation:
Applied Physics Laboratory Department of Technical Services, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
K. J. Hemker*
Affiliation:
Department of Mechanical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
*
b)Author all correspondence to this author. e-mail: hemker@jhu.edu
Get access

Abstract

Polycrystalline silicon thin films (polysilicon) have been deposited on single crystalline silicon substrates, and square and rectangular windows have been etched into these substrates using standard micromachining techniques. Pressure-displacement curves of the resulting polysilicon membranes have been obtained for these geometries, and this data has been used to determine the elastic constants E and v. The microstructural features of the films have been investigated by transmission electron microscopy (TEM) and x-ray diffraction. The grains were observed to be columnar and were found to have a 〈011〉 out-of-plane texture and a random in-plane grain orientation. A probabilistic model of the texture has been used to calculate the bounds of the elastic constants in the thin films. The results obtained from bulge testing (E = 162 ± 4 GPa and v = 0.20 ± 0.03) fall in the wide range of values previously reported for polysilicon and are in good agreement with the microsample tensile measurements conducted on films deposited in the same run as the present study (168 ± 2 GPa and 0.22 ± 0.01) and the calculated values of the in-plane moduli for 〈1103〉 textured films (E = 163.0–165.5 GPa and v = 0.221–0.239).

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hammond, M. L., in Polysilicon Thin Films and Interfaces, edited by Kamins, T., Raicu, B., and Thompson, C.V. (Mater. Res. Soc. Symp. Proc. 182, Pittsburgh, PA, 1990), p. 3.Google Scholar
2.Rosler, R.S., Solid State Technol. 20, 63 (1977).Google Scholar
3.Polysilicon Films and Interfaces, edited by Wang, C.Y., Thompson, C. V., and Tu, K-N. (Mater. Res. Soc. Symp. Proc. 106, Pittsburgh, PA, 1987).Google Scholar
4.Kamins, T.I., Mandurah, M. M., and Saraswat, K. C., J. Electrochem. Soc. 125, 927 (1978).CrossRefGoogle Scholar
5.Nagasima, N. and Kubota, N., Jpn. J. Appl. Phys. 14, 1105 (1975).CrossRefGoogle Scholar
6.Kamins, T.I., J. Electrochem. Soc. 127, 686 (1980).CrossRefGoogle Scholar
7.Piette, S.A., Kiely, C. J., and Eden, J.G., in Polysilicon Films and Interfaces, edited by Wang, C. Y., Thompson, C. V., and Tu, K-N. (Mater. Res. Soc. Symp. Proc. 106, Pittsburgh, PA, 1987), p. 15.Google Scholar
8.Wada, Y. and Nishimatsu, S., J. Electrochem. Soc. 125, 1499 (1978).CrossRefGoogle Scholar
9.Schins, W.J. H., Bezemer, J., Holtrop, H., and Radelaar, S., J. Electrochem. Soc. 127, 1193 (1980).CrossRefGoogle Scholar
10.Weihs, T.P., Hong, S., Bravman, J.C., and Nix, W.D., J. Mater. Res. 3, 931 (1988).CrossRefGoogle Scholar
11.Biebl, M., Scheiter, T., Hierold, C., Philipsborn, H. V., and Klose, H., Sensors and Actuators A 47, 593 (1995).CrossRefGoogle Scholar
12.Michalicek, M.A., Sene, D. E., and Bright, V. M., Proc. Int. Conf. on Integrated Micro/Nanotechnology for Space Applications, NASA and Aerospace Corp. (1995), p. 214.Google Scholar
13.Gupta, R.K., Osterberg, P. M., and Senturia, S. D., SPIE Proc. 2880, 39 (1996).CrossRefGoogle Scholar
14.Biebl, M., Brandl, G., and Howe, R.T., Proc. 8th Int. Conf. on Solid State Sensors and Actuators and Eurosensors, Sweden (IEEE Cat. No. 95TH8173) 3, 251-PA8 (1995).Google Scholar
15.Kahn, H., Stemmer, S., Nandakumar, K., Heuer, A. H., Muller, R. L., Ballarini, R., and Huff, M. A., 9th Int. Workshop on MEMS (1996), p. 343.Google Scholar
16.Keisewetter, L., Zhang, J. N., Houdeau, D., and Steckenborn, A., Sensors and Actuators A 35, 153 (1992).CrossRefGoogle Scholar
17.Roy, S., Furukawa, S., Miyajima, H., and Mehregany, M., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S. P., Børgesen, P., Townsend, P. H., Ross, C. A., and Volkert, C.A. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 573.Google Scholar
18.Tang, W.C., Ph.D. Thesis, University of California at Berkley, Berkley, CA (1990).Google Scholar
19.Tilmans, H. A. C., Ph.D. Thesis, MESA Research Institute, University of Twente, Enschede, The Netherlands (1993).Google Scholar
20.Guckel, H., Burns, D.W., Tilmans, H.A.C, DeRoo, D.W., and Rutigliano, C. R., Proc. IEEE Solid-State Sensors and Actuators Workshop, Hilton Head, SC (1988), p. 96.Google Scholar
21.Read, D. T. and Marshall, J. C., SPIE 2880, 56 (1996).Google Scholar
22.Read, D. T. and Dally, J.W., J. Mater. Res. 8, 1542 (1993).CrossRefGoogle Scholar
23.Sharpe, W.N., Yuan, B., Vaidyanathan, R., and Edwards, R. L., SPIE 2880, 78 (1996).Google Scholar
24.Sharpe, W.N. Jr, Yuan, B., Edwards, R. L., and Vaidyanathan, R., Proc. 10th IEEE Int. Workshop on MEMS, Nagoya, Japan (1997), p. 424.Google Scholar
25.Koskinen, J., Steinwall, E., Soave, R., and Johnson, H. H., J. Micromechanics Microengineering 35, 13 (1993).CrossRefGoogle Scholar
26.Tsuchiya, T., Tabata, O., Sakata, J., and Taga, Y., Proc. 10th IEEE Int. Workshop on MEMS, Nagoya, Japan (1997), p. 529.Google Scholar
27.Beams, J. W., Structure and Properties of Thin Films, edited by Neugebauer, C. A., Newkirk, J.B., and Vermilyea, D.A. (John Wiley and Sons, Inc., New York, 1959), p. 183.Google Scholar
28.Vlassak, J. J. and Nix, W.D., J. Mater. Res. 7, 3242 (1992).CrossRefGoogle Scholar
29.Maier-Schneider, D., Maibach, J., Obermeier, E., and Schneider, D., J. Micromechanics and Microengineering 5, 121 (1995).CrossRefGoogle Scholar
30.Levy, S., Proc. Symp. Appl. Math. 1, 197 (1947).CrossRefGoogle Scholar
31.Timosheko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells (McGraw-Hill, Inc., New York, 1987).Google Scholar
32.Lin, P. H., Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA (1990).Google Scholar
33.Tabata, O., Kawahata, K., Sugiyama, S., and Igarashi, I., Sensors and Actuators A 20, 135 (1989).CrossRefGoogle Scholar
34.Vinci, R. P. and Vlassak, J. J., Annual Rev. Mater. Sci. 26, 431 (1996).CrossRefGoogle Scholar
35.Legros, M., Kumar, M., Jayaraman, S., Hemker, K.J., and Sharpe, W.N. Jr, in Epitaxial Oxide Thin Films III, edited by Schlom, D. G., Eom, C-B., Hawley, M.E., Foster, C.M., and Speck, J.S. (Mater. Res. Soc. Symp. Proc. 474, Pittsburgh, PA, 1997), p. 275.Google Scholar
36.Schlienger, M.E., Stanley, J.T., and Fraser, H. L., DIFFRACT v.1.2, with permission.Google Scholar
37.Hill, R., Proc. Phys. Soc. London (A) 65, 349 (1952).CrossRefGoogle Scholar
38.Voigt, W., Lehrbuch der Krystallphysik, Teubner, B. G., Leipzig, 1910).Google Scholar
39.Reuss, A., Zeitschrift fur Angewandte Mathematik und Mechanik 9, 49 (1929).CrossRefGoogle Scholar
40.Hashin, Z. and Shtrikman, S., J. Mech. Phys. Solids 11, 127 (1963).CrossRefGoogle Scholar
41.Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (M.I.T Press, Cambridge, MA, 1971), p. 262.Google Scholar
42.McSkimin, H.J., J. Appl. Phys. 24, 988 (1953).CrossRefGoogle Scholar
43.McSkimin, H.J. and Andreatch, P. Jr, J. Appl. Phys. 35, 2161 (1964).CrossRefGoogle Scholar
44.Hall, J. J., Phys. Rev. 161, 756 (1967).CrossRefGoogle Scholar
45.Prasad, S.C. and Wooster, W.A., Acta Crystallogr. 8, 361 (1955).CrossRefGoogle Scholar
46.Metals Reference Book, 5th ed., edited by Smithells, C.J. and Brandes, E. A. (Butterworths and Co. Pvt. Ltd., 1976); p. 978.Google Scholar
47.Smithells Metals Reference Book, 6th ed., edited by Brandes, E. A. (Butterworths and Co. Pvt. Ltd., 1983), p. 15–6.Google Scholar
48.Landbolt–Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III (SpringerVerlag, Berlin 1979), Vol. 2.Google Scholar
49.Gluyas, M., Ph.D. Thesis, Exeter University (1963).Google Scholar
50.Ezz-El-Arab, M. and Vodar, B., Compt. Rend. B 266, 92 (1968).Google Scholar
51.CRC Handbook of Chemistry and Physics, 76th ed., edited by Lide, D.R. (CRC Press, Inc., Boca Raton, FL, 1995).Google Scholar
52.Hirth, J. P. and Lothe, J., Theory of Dislocations (McGraw-Hill, Inc., New York, 1968).Google Scholar
53.Huntington, H.B., Solid State Phys. 7, 213 (1958).CrossRefGoogle Scholar
54.Mullen, R.L., Ballarini, R., Yin, Y., and Heuer, A. H., Acta Mater. 45, 2247 (1997).CrossRefGoogle Scholar