Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T22:03:05.801Z Has data issue: false hasContentIssue false

Recent advances and challenges in electroplastic manufacturing processing of metals

Published online by Cambridge University Press:  31 January 2011

Lei Guan
Affiliation:
Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; and Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, China
Guoyi Tang*
Affiliation:
Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
Paul K. Chu*
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, China
*
a)Address all correspondence to this author. e-mail: tanggy@mail.tsinghua.edu.cn
b)Address all correspondence to this author. e-mail: paul.chu@cityu.edu.hk
Get access

Abstract

Electroplastic manufacturing processing (EPMP) is a relatively new metal-forming process that is energy efficient, environmentally friendly, and versatile. In particular, it can be used to manufacture metals or alloys that are difficult to process by conventional manufacturing protocols. There have been significant advances in EPMP in the past decade, and this review summarizes our current state of understanding and describes recent developments in EPMP. Particular emphasis is placed on describing the mechanisms responsible for the electroplastic effect and microstructure evolution as well as major advances in EPMP of metals. Challenges facing theoretical and experimental investigations are also discussed.

Type
Reviews
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Troitskii, O.A., Likhtman, V.I.The effect of the anisotropy of electron and γ radiation on the deformation of zinc single crystals in the brittle state. Kokl. Akad. Nauk. SSSR. 148, 332 (1963)Google Scholar
2.Troitskii, O.A.Electro-mechanical effect in the brittle state. Zh. Eskp. Teor. Fiz. 10, 18 (1969)Google Scholar
3.Troitskii, O.A., Rozno, A.G.Electroplastic effects in metals. Fiz. Tverd. Tela 12, 161 (1970)Google Scholar
4.Troitskii, O.A.Rate and temperature dependence of the electroplastic effect. Fiz. Met. Metalloved. 32, 408 (1971)Google Scholar
5.Troitskii, O.A.Simulation of the thermal and pinch effects of pulsed current on the plastic deformation of a metal. Prob. Proch. July 14 (1975)Google Scholar
6.Spitsyn, V.I., Troitskii, O.A.Simulation of the thermal and pinch effects of pulsed current on the plastic deformation of a metal. Dokl. Akad. Nauk 220, 1070 (1975)Google Scholar
7.Troitskii, O.A.The effect of an electric current on the relaxation of stresses in crystals of zinc. Fiziko-Khim. Mevh. Mater. 13, 46 (1977)Google Scholar
8.Troitskii, O.A., Spitsyn, V.I., Stashenko, V.I.The effect of an electric current on the relaxation of stresses in crystals of zinc. Dokl. Akad. Nauk 241, 349 (1978)Google Scholar
9.Troitskii, O.A., Stashenko, V.I.Stress relaxation investigation of the electroplastic deformation of a metal. Fiz. Met. Metalloved. 47, 180 (1979)Google Scholar
10.Troitskii, O.A., Stashenko, V.I., Kalymbetov, P.U.The electroplastic effect in oppositely moving pulses. Dokl. Akad. Nauk 253, 96 (1980)Google Scholar
11.Troitskii, O.A., Kalymbetov, P.U.Determination of the mechanical stresses induced by current. Fiziko Metall. 51, 219 (1981)Google Scholar
12.Troitskii, O.A., Stashenko, V.I.Dependence of the electroplastic effect in zinc on individual pulse lengths. Fiziko Metall. 51, 1056 (1981)Google Scholar
13.Stashenko, V.I., Troitskii, O.A.Influence of pulsating current frequencies and external mechanical stress on the creep rate of crystals. Fiz. Met. Metalloved. 53, 180 (1982)Google Scholar
14.Stashenko, V.I., Troitskii, O.A., Spitsyn, V.I.Action of current pulses on zinc single crystals during creep. Phys. Status Solidi A 79, 549 (1983)CrossRefGoogle Scholar
15.Zuyev, L.V., Ye Gromov, V., Kurilov, V.F.Motion of dislocations under the influence of current pulses in monocrystalline zinc. Dokl. Akad. Nauk 239, 84 (1978)Google Scholar
16.Boyko, Yu.I., Geguzin, Ya.Ye., Klinchuk, Yu.I.Experimental discovery of entrainment of dislocation by an electron wind in metals. Zh. Eskp. Teor. Fiz. 30, 154 (1979)Google Scholar
17.Spitsyn, V.I., Troitskii, O.A., Glazunzov, P.Ya.Electroplastic deformation of metal before brittle fracture. Dokl. Akad. Nauk 199, 810 (1971)Google Scholar
18.Troitskii, O.A., Skobtsov, I.L., Menshikh, A.V.Electroplastic deformation of metal brittle rupture. Fiziko Metall. 33, 392 (1972)Google Scholar
19.Finkel, V.M., Golovin, Y.I., Sletkov, A.A.Destruction of top of a crack by a strong electromagnetic-field. Dokl. Akad. Nauk 2, 325 (1977)Google Scholar
20.Karpenko, G.V., Kuzin, O.A., Tkachev, V.I., Rudenko, V.P.Effect of electric-current on low-cycle fatigue of steel. Dokl. Akad. Nauk 227, 85 (1976)Google Scholar
21.Spitsyn, V.I., Troitskii, O.A.Effect of electric-current and pulsed magnetic-field on metal creep rate. Dokl. Akad. Nauk. S.S.S.R. Ser. Metallii No. 216, 1266 (1974)Google Scholar
22.Spitsyn, V.I., Troitskii, O.A.Electroplastic effect in metals. Vest. Akad. Nauk. Stal. SSSR 11, 10 (1974)Google Scholar
23.Klimov, K.M., Shnyrev, G.D., Novikov, I.I.Electroplasticity of metals. Dokl. Akad. Nauk 219, 323 (1974)Google Scholar
24.Spitsyn, V.I., Troitskii, O.A., Ryzhkov, V.G., Kozyrev, A.S.Single-die electroplastic drawing of very fine copper wires. Dokl. Akad. Nauk 231, 402 (1976)Google Scholar
25.Spitsyn, V.I., Kopiev, A.V., Ryzhkov, V.G., Sokilov, N.V., Troitskii, O.A.Flatting mill for finest tungsten spring band using ultrasound and electroplastic effect. Dokl. Akad. Nauk 236, 861 (1977)Google Scholar
26.Troitskii, O.A., Spitsyn, V.I., Sokolov, N.V., Ryzhkov, V.G.Electroplastic drawing of stainless-steels. Dokl. Akad. Nauk 237, 1082 (1977)Google Scholar
27.Troitskii, O.A., Spitsyn, V.I., Ryzhkov, V.G.Electroplastic drawing of steel, copper, and tungsten. Dokl. Akad. Nauk 243, 330 (1978)Google Scholar
28.Klimov, K.M., Novikov, I.I.Effect of a temperature-gradient and a high-density electric-current on the plastic-deformation of wire. Russ. Metall. 6, 127 (1978)Google Scholar
29.Zaretskii, A.V., Osipyan, Y.A., Petrenko, V.F.Mechanism of electroplastic effect in zinc. Fiz. Tverd. Tela 20, 1442 (1978)Google Scholar
30.Klimov, K.M., Novikov, I.I.Effect of current pulses on the deformation of metallic wires. IZV Akad. Nauk. S.S.S.R. Met. 3, 160 (1983)Google Scholar
31.Boyko, Yu.I., Geguzin, Ya.Ye., Klinchuk, Yu.I.Experimental discovery of entrainment of dislocations by an electron wind in metals. Zh. Eskp. Teor. Fiz. 30, 154 (1979)Google Scholar
32.Klimov, K.M., Burkhanov, Y.S., Novikov, I.I.Effect of a high-density electric-current on the plastic-deformation of aluminum. Strength Mater. 17, 782 (1985)CrossRefGoogle Scholar
33.Okazaki, K., Kagawa, M., Conrad, H.A study of the electroplastic effect in metals. Scr. Metall. 12, 1036 (1978)CrossRefGoogle Scholar
34.Okazaki, K., Kagawa, M., Conrad, H.Additional results on the electroplastic effect in metals. Scr. Metall. 13, 277 (1979)CrossRefGoogle Scholar
35.Okazaki, K., Kagawa, M., Conrad, H.Effects of strain rate, temperature and interstitial content on the electroplastic effect in titanium. Scr. Metall. 13, 473 (1979)CrossRefGoogle Scholar
36.Okazaki, K., Kagawa, M., Conrad, H.An evaluation of the contribution of skin, pinch and heating effects to the electroplastic effect in titanium. Mater. Sci. Eng. 45, 109 (1980)CrossRefGoogle Scholar
37.Okazaki, K., Kagawa, M., Conrad, H.The electro-plastic effect in titaniumTitanium'80 Science and Technology (TMS–AIME, Warrendale, PA 1980)763Google Scholar
38.Sprecher, A.F., Mannan, S.L., Conrad, H.On the temperature rise associated with the electroplastic effect in titanium. Scr. Metall. 17, 769 (1983)CrossRefGoogle Scholar
39.Conrad, H., Sprecher, A.F., Mannan, S.L.Proceedings International Symposium on Mechanics of Dislocation edited by E.C. Aifantis and J.P. Hirth (American Society for Metals, Metals Park, OH 1985)225Google Scholar
40.Cao, W.D., Sprecher, A.F., Conrad, H.Measurement of the electroplastic effect in Nb. Scr. Metall. 22, 1026 (1989)Google Scholar
41.Cao, W.D., Sprecher, A.F., Conrad, H.Effect of strain rate on the electroplastic effect in Nb. Scr. Metall. 23, 151 (1989)CrossRefGoogle Scholar
42.Cao, W.D., Conrad, H.Effect of stacking fault energy and temperature on the electroplastic effect in FCC metalsMicromechanics of Advanced Materials—A Symposium in Honor of Professor James C.M. Li's 70th birthday (Minerals, Metals & Materials Society, Warrendale, PA 1995)225Google Scholar
43.Varma, S.K., Cornwell, L.R.Comments on the electroplastic effect in aluminum-reply. Scr. Metall. 14, 1035 (1980)CrossRefGoogle Scholar
44.Goldman, P.D., Motowidlo, L.R., Galligan, G.M.The absence of an electroplastic effect in lead at 4.2 K. Sci. Metall. 15, 353 (1981)CrossRefGoogle Scholar
45.Varma, S.K., Cornwell, L.R.Electroplastic effect in aluminum. Scr. Metall. 13, 733 (1979)CrossRefGoogle Scholar
46.Varma, S.K., Cornwell, L.R.Comments on the electroplastic effect in aluminum—Reply. Scr. Metall. 14, 1035 (1980)CrossRefGoogle Scholar
47.Troitskii, O.A.Radiation-Induced Changes in the Strength and Plasticity of Zinc Single Crystals (Moscow 1968)Google Scholar
48.Heigel, J.C., Andrawes, J.S., Roth, J.T., Hoque, M.E., Ford, R.M.Viability of electrically treating 6061 T6511 aluminum for use in manufacturing processes. Trans. NAMRI/SME 33, 145 (2005)Google Scholar
49.Ross, C., Roth, J.T.The effects of DC current on the tensile properties of metalsProceedings of the ASME Materials Division Roth 100 (ASME, New York 2005)363Google Scholar
50.Zhu, Y.H., To, S., Lee, W.B., Liu, X.M., Jiang, Y.B., Tang, G.Y.Effects of dynamic electropulsing on microstructure and elongation of a Zn-Al alloy. Mater. Sci. Eng., A 501, 125 (2009)CrossRefGoogle Scholar
51.Troitskii, O.A., Nikitenko, Yu.V., Moiseev, M.M. Electro-plastic deformation process for metals—Stopping blank deformation at stress level between 1.5 times yield point of metal and 0.9 times its ultimate strength. Patent SU1687349-A1 (1991)Google Scholar
52.Troitskii, O.A., Troitskii, V.O. Method for plastic working of metals involves applying current pulses, rolling, drawing, flattening frequency to multiple frequency of ultrasonic oscillations by ultrasound generator in predetermined range thus improve efficiency. Patent RU2321468-C2 (2008)Google Scholar
53.Klimov, K.M., Novikov, I.I.Effects of temperature gradient and a high-density electric current on the plastic deformation of wire. Russ. Metall. 6, 175 (1978)Google Scholar
54.Spitsyn, V.I., Troitskii, O.A., Gusev, E.V., Kurdiukov, V.D.K.Electroplastic deformation of stainless (18/9) steel. Izv. Akad. Nauk SSSR [Khim] 2, 123 (1974)Google Scholar
55.Spitsyn, V.I., Troitskii, O.A., Gaviish, A.A., Karynkin, V.I., Shaka, G.E., Stashenko, V.I., Kozyrev, A.S.X-ray diffraction and mechanical investigation of copper after electroplastic drawing. Izv. Akad. Nauk SSSR [Khim] 4, 120 (1978)Google Scholar
56.Troitskii, O.A., Spitsyn, V.O., Sokolov, N.V., Ryzhkov, V.G., Dubov, Yu.S.Electroplastic drawing of magnetically hard steel wire. Izv. Akad. Nauk SSSR [Khim] 2, 113 (1979)Google Scholar
57.Troitskii, O.A., Stashenko, V.I., Sokolov, N.V., Ryzhkov, V.G.Electroplastic drawing of stainless steel. DAN S.S.S.R. 237, 1082 (1977)Google Scholar
58.Troitskii, O.A., Stashenko, V.I., Ryzhkov, V.G.Electroplastic drawing of steel, copper and tungsten. DAN S.S.S.R. 243, 330 (1978)Google Scholar
59.Bazaykin, V.I., Gromov, V.E., Kuznetsov, V.A., Peretyatho, V.N.Mechanics of electrostimulated wire drawing. Int. J. Solids Struct. 27, 1693 (1991)CrossRefGoogle Scholar
60.Klimov, K.M.Alternative methods of producing bars and wire. Metallurgist 51, 511 (2007)CrossRefGoogle Scholar
61.Klimov, K.M., Shnyrev, G.D., Novikov, I.I., Isaev, A.V.Electroplastic rolling of tungsten and tungsten-rhenium wire into strip of micro thickness. Russ. Metall. 4, 107 (1975)Google Scholar
62.Spitsyn, V.I., Kopiev, A.V., Ryzhkov, V.G., Sokolov, N.V., Troitskii, O.A.Flatting mill for finest tungsten spring band using ultrasound and electroplastic effect. Dokl. Akad. Nauk 236, 861 (1977)Google Scholar
63.Klimov, K.M., Morukhovich, A.M., Glezer, A.M., Molotilov, B.V.Rolling of iron–cobalt alloys which are different to pressure-form, using a high density electric current. Izv. Akad. Nauk SSSR 6, 69 (1981)Google Scholar
64.Klimov, K.M., Novikov, I.I.Absence of strain hardening upon electrostimulated rolling of metals under cold conditions. Dokl. Phys. 52, 359 (2007)CrossRefGoogle Scholar
65.Mal'tsev, I.M.Electroplastic rolling of metals with a high-density current. Russ. J. Non-Ferrous Met. 49, 175 (2009)CrossRefGoogle Scholar
66.Tang, G.Y., Zheng, M.X., Zhu, Y.H., Zhang, J., Fang, W., Li, Q.The application of the electro-plastic technique in the cold-drawing of steel wires. J. Mater. Process. Technol. 84, 268 (1998)CrossRefGoogle Scholar
67.Tang, G.Y., Zhang, J., Zheng, M.X., Zhang, J., Fang, W., Li, Q.Experimental study of electroplastic effect on stainless steel wire 304L. Mater. Sci. Eng., A 281, 263 (2000)CrossRefGoogle Scholar
68.Tang, G.Y., Zhang, J., Yan, Y.J., Zhou, H.H., Fang, W.The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire. J. Mater. Process. Technol. 137, 96 (2003)CrossRefGoogle Scholar
69.Tian, H.Y., Tang, G.Y., Ding, F., Xu, Z.H., Jiang, Y.B.Research on electroplastic drawing of Mg alloy wire. Nonferrous Met. 59, 10 (2007)Google Scholar
70.Xu, Z.H., Tang, G.Y., Tian, S.Q., Ding, F., Tian, H.Y.Research of electroplastic rolling of AZ31 Mg alloy strip. J. Mater. Process. Technol. 182, 128 (2007)CrossRefGoogle Scholar
71.Guan, L., Tang, G.Y., Chu, P.K.Microstructure and texture development during single pass large draught rolling of Mg-3Al-1Zn magnesium alloy sheets by electroplastic rolling. J. Mater. Res. (submitted)Google Scholar
72.Tang, G.Y., Xu, Z.H., Tian, S.Q., Xiao, C. Electroplastic rolling method and apparatus for deformable magnesium alloy sheet, band and wire rod. Patent CN1891363-A (2007)Google Scholar
73.Wang, S.N. Effect of electric pulses on drawability and corrosion property of AZ31 magnesium alloy. Master Thesis Beijing, Tsinghua University 2009Google Scholar
74.Gromov, V.E., Kozlov, E.V., Zuev, L.B., Tsellermaer, V.Ya., Aponasenkov, O.V.Defect structure of ferrite and austenite steels developed under electrostimulated plastic deformation. Int. Congr. Bioceram. Hum. Body 2, 46 (1994)Google Scholar
75.Spitsyn, V.I., Troitskii, O.A., Levin, L.V. Drawing of electrically conductive wire—By connection of draw current source pole to deformation zone to facilitate drawing at high rates based on electro-plastic effect. Patent SU584934-A (1977)Google Scholar
76.Spitsyn, V.I., Stashenko, V.I., Troitskii, O.A. Metal foil pressure treatment—With specified pulse rate of current passing through blank to speed up process. Patent SU829241-B (1981)Google Scholar
77.Stolyarov, V.V.Nanostructured shape memory TiNi alloy processed by severe electroplastic deformation. Mater. Sci. Forum 584–586, 507 (2008)CrossRefGoogle Scholar
78.Stolyarov, V.V.Deformability and nanostructuring of TiNi shape-memory alloys during electroplastic rolling. Mater. Sci. Eng., A 503, 18 (2009)CrossRefGoogle Scholar
79.Sergeeva, A.E., Stolyarov, V.V.Electromagnetic Fields Effect on the Structure and Characteristics of Materials edited by Yu. Baranov, V. Gromov, and G. Tang (Novokuznetskii Polygraphic Center, Novokuznetsk 2009)317Google Scholar
80.Stolyarov, V.V., Ugurchiev, U.Kh., Gurtovaya, I.B., Prokoshkin, S.D.Increase in the deformability of coarse-grained TiNi alloy rolled with superimposition of pulse current. Metal Sci. Heat Treat. 50, 132 (2008)CrossRefGoogle Scholar
81.Humphreys, F.J., Hatherly, M.Recrystallization and Related Annealing Phenomena (Pergamon Press, Oxford 1995)Google Scholar
82.Troitskii, O.A.Pressure shaping by the application of a high energy. Mater. Sci. Eng. 75, 37 (1985)CrossRefGoogle Scholar
83.Sprecher, A.F., Mannan, S.L., Conrad, H.On the mechanisms for the electroplastic effect in metals. Acta Metall. 34, 1145 (1986)CrossRefGoogle Scholar
84.Conrad, H.Electroplasticity in metals and ceramics. Mater. Sci. Eng., A 287, 276 (2000)CrossRefGoogle Scholar
85.Conrad, H.Effects of electric current on solid-state phase transformation in metals. Mater. Sci. Eng., A 287, 227 (2000)CrossRefGoogle Scholar
86.Goldman, P.D., Motowidlo, L.R., Galligan, J.M.The absence of an electroplastic effect in lead at 4.2 K. Scr. Metall. 15, 353 (1981)CrossRefGoogle Scholar
87.Timsit, R.S.Remarks on recent experimental observations of electroplastic effect. Scr. Metall. 15, 461 (1981)CrossRefGoogle Scholar
88.Conrad, H., Sprecher, A.F.Dislocation in Solids edited by F.R.N. Nabarro (Elsevier, Amsterdam 1989)497541Google Scholar
89.Yang, D., Conrad, H.Exploratory study into the effects of an electric field and of high current density electropulsing on the plastic deformation of TiAl. Intermetallics 9, 943 (2001)CrossRefGoogle Scholar
90.Conrad, H.Thermally activated plastic flow of metals and ceramics with an electric field or current. Mater. Sci. Eng., A 322, 100 (2002)CrossRefGoogle Scholar
91.Antolovich, S.D., Conrad, H.The effects of electric currents and fields on deformation in metals, ceramics, and ionic materials: An interpretive survey. Mater. Manuf. Processes 19, 587 (2004)CrossRefGoogle Scholar
92.Molotskii, M., Fleurov, V.Magnetic effects in electroplasticity of metals. Phys. Rev. B 52, 15829 (1995)CrossRefGoogle ScholarPubMed
93.Gupta, R.P., Serruys, Y., Brebec, G., Adda, Y.Calculation of the effective valence for electromigration in niobium. Phys. Rev. B 27, 669 (1983)CrossRefGoogle Scholar
94.Lucke, K., Stuwe, H.P.Recovery and Recrystallization of Metals edited by L. Himmel (Interscience, New York 1963)171Google Scholar
95.Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jones, J.J., Juul Jensen, D., Kassner, M.E., King, W.E., McNelley, T.R., McQueen, H.J., Rollett, A.D.Current issues in recrystallization: A review. Mater. Sci. Eng., A 238, 219 (1997)CrossRefGoogle Scholar
96.Zhang, W., Sui, M.L., Zhou, Y.Z., Li, D.X.Evolution of microstructures in materials induced by electropulsing. Micron 34, 189 (2003)CrossRefGoogle ScholarPubMed
97.Zhang, W., Sui, M.L., Hu, K.Y., Li, D.X., Guo, X.N., He, G.H., Zhou, B.L.Formation of nanophases in a Cu–Zn alloy under high current density electropulsing. J. Mater. Res. 15, 2065 (2000)CrossRefGoogle Scholar
98.Zhou, Y.Z., Zhang, W., Wang, B.Q., He, G.H., Guo, J.D.Grain refinement and formation of ultrafine-grained microstructure in a low-carbon steel under electropulsing. J. Mater. Res. 17, 2105 (2002)CrossRefGoogle Scholar
99.Dolinsky, Y., Elperin, T.Thermodynamics of phase-transitions in current-carrying conductors. Phys. Rev. B 47, 14778 (1993)CrossRefGoogle ScholarPubMed
100.Dolinsky, Y., Elperin, T.Thermodynamics of nucleation in current-carrying conductors. Phys. Rev. B 50, 52 (1994)CrossRefGoogle ScholarPubMed
101.Zhu, Y.H., Sandy, T., Lee, W.B., Liu, X.M., Jiang, Y.B., Tang, G.Y.Electropulsing-induced phase transformations in a Zn–Al based alloy. J. Mater. Res. 24, 2661 (2009)CrossRefGoogle Scholar
102.Zhu, Y.H., Sandy, T., Lee, W.B., Liu, X.M., Jiang, Y.B., Tang, G.Y.Effects of current density on electropulsing-induced phase transformations in a Zn–Al based alloy. Appl. Phys. A 96, 939 (2009)Google Scholar
103.Jiang, Y.B., Tang, G.Y., Shek, C.H., Zhu, Y.H., Guan, L., Wang, S.N., Xu, Z.H.Improved ductility of aged Mg–9Al–1Zn alloy strip by electropulsing treatment. J. Mater. Res. 24, 1810 (2009)CrossRefGoogle Scholar
104.Jiang, Y.B., Tang, G.Y., Shek, C.H., Zhu, Y.H.Effect of electropulsing treatment on microstructure and tensile fracture behavior of aged Mg–9Al–1Zn alloy strip. Appl. Phys. A 97, 607 (2009)CrossRefGoogle Scholar
105.Jiang, Y.B., Tang, G.Y., Shek, C.H., Zhu, Y.H., Xu, Z.H.On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17–Al12 phase in an aged Mg–9Al–1Zn alloy. Acta Mater. 57, 4797 (2009)CrossRefGoogle Scholar