Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:32:24.620Z Has data issue: false hasContentIssue false

Reactions between palladium and gallium arsenide: Bulk versus thin-film studies

Published online by Cambridge University Press:  31 January 2011

J. -C. Lin
Affiliation:
Department of Metallurgical and Mineral Engineering, University of Wisconsin, 1509 University Avenue, Madison, Wisconsin 53706
K. -C. Hsieh
Affiliation:
Department of Metallurgical and Mineral Engineering, University of Wisconsin, 1509 University Avenue, Madison, Wisconsin 53706
K. J. Schulz
Affiliation:
Department of Metallurgical and Mineral Engineering, University of Wisconsin, 1509 University Avenue, Madison, Wisconsin 53706
Y. A. Chang
Affiliation:
Department of Metallurgical and Mineral Engineering, University of Wisconsin, 1509 University Avenue, Madison, Wisconsin 53706
Get access

Abstract

Reactions between Pd and GaAs have been studied using bulk-diffusion couples of Pd (∼0.6 mm thick) /GaAs and thin-film Pd (50 and 160 nm)/GaAs samples. The sequence of phase formation at 600°C between bulk Pd and GaAs was established. Initial formation of the solution phase μ and the ternary phase T does not represent the stable configuration. The stable configuration is GaAs |∊|Λ|γ|ν|Pd and is termed the diffusion path between GaAs and Pd. The sequence of phase formation for the bulk-diffusion couples is similar at 500°C. Phase formation for the thin-film Pd/GaAs specimens was studied at 180,220,250,300,350,400,450,600, and 1000°C for various annealing times. The sequence of phase formation obtained from the thin-film experiments is rationalized readily from the known ternary phase equilibria of Ga–Pd–As and the results from the bulk-diffusion couples of Pd/GaAs. The thin-film results reported in the literature are likewise rationalized. The diffusion path concept provides a useful guide in understanding the phase formation in Pd–GaAs interface or any other M-GaAs interface. This information is important in designing a uniform, stable contact for the metallization of GaAs.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Olowolafe, J. O.Ho, P. S.Hovel, H. J.Lewis, J. E. and Woo-dall, T. M., J. Appl. Phys. 50, 955 (1979).Google Scholar
2Oustry, A.Gaumont, M.Escaut, A.Martinez, A. and Toprasert-pong, B., Thin Solid Films 79, 251 (1981).CrossRefGoogle Scholar
3Vyatkin, A. P.Maksimova, N. K.Panova, N. M.Pekarskii, E. N.Romanova, I. P. and Yakubenya, M. P.Izv. Vyssh. Ucheb. Zaved. Fiz. 24, 3 (1981).Google Scholar
4Zheng, Z. F. and Chung, D. L.J. Vac. Sci. Technol. 21, 611 (1982).Google Scholar
5Oelhafen, P.Freeouf, J. L.Kuan, T. S.Jackson, T. N. and Batson, P. E.J. Vac. Sci. Technol. B1, 588 (1983).Google Scholar
6Kuan, T. S.Freeouf, J. L.Batson, P. E. and Wilkie, E. L.J. Appl. Phys. 58, 1519 (1985).CrossRefGoogle Scholar
7Sands, T.Keramidas, V. G.Gronsky, R. and Washburn, J.Thin Solid Films 136, 105 (1986).CrossRefGoogle Scholar
8Sands, T.Keramidas, V. G.Gronsky, R. and Washburn, J.Mater. Lett. 3, 409 (1985).Google Scholar
9Sands, T.Keramidas, V. G.Yu, A. J.Gronsky, R. and Washburn, J. in Thin Films-Interfaces and Phenomena, edited by Nemanich, R. J.Ho, P. S. and Lau, S. S. (Materials Research Society, Pittsburgh, PA, 1985), p. 367.Google Scholar
10Sands, T.Yu, K. M.Cheung, S. K. and Keramidas, V. G.Semiconductor-Based Heterostructures, edited by Green, M. L.Baglin, J. E. E., Chin, G. Y.Deckman, H. W.Mayo, W. and Sinham, D. Nara (The Metals Society of AIME, Warrendale, PA, 1986), p. 397.Google Scholar
11Sands, T.Keramidas, V. G.Yu, A. J.Yu, K.M.Gronsky, R. and Washburn, J. submitted to J. Mater. Res.Google Scholar
12Fontaine, C.Okumura, T. and Tu, K. N.J. Appl. Phys. 54, 1404 (1983).CrossRefGoogle Scholar
13Murarka, S. P.Solid-State Electron. 17, 869 (1974).Google Scholar
14Kumar, V.J. Phys. Chem. Solids B3, 535 (1975).Google Scholar
15Sinha, A. K.Appl. Phys. Lett. 26, 171 (1975).CrossRefGoogle Scholar
16Yu, A. J.Galvin, G. J.Palmstrom, C. J. and Mayer, J. W.Appl. Phys. Lett. 47, 934 (1985).Google Scholar
17Coleman, D. J. Jr. , Wisseman, W. R. and Shaw, D. W.Appl. Phys. Lett. 24, 355 (1974).CrossRefGoogle Scholar
18Sinha, A. K. and Poate, J. M. in Thin Films–Interdiffusion and Reactions, edited by Poate, J. M.Tu, K. N. and Mayers, J. W. (Wiley-Interscience, New York, 1978), p. 407.Google Scholar
19Petroif, P. M. and Sheng, T. T. ATT Bell Laboratory, quoted by Sinha and Poate (Ref. 18).Google Scholar
20Sinha, A. K. and Poate, J. M.Appl. Phys. Lett. 23, 666 (1973).CrossRefGoogle Scholar
21Sinha, A. K.Appl. Phys. Lett. 26, 171 (1975).CrossRefGoogle Scholar
22Pugh, J. H. and Williams, R. S.J. Mater. Res. 1, 343 (1986).CrossRefGoogle Scholar
23Tsai, C. T. and Williams, R. S.J. Mater. Res. 1, 352 (1986).Google Scholar
24Tsai, C. T. and Williams, R. S.J. Mater. Res. 1, 820 (1986).Google Scholar
25Beyers, R.Kim, K. B. and Sinclair, R.J. Appl. Phys. 61, 2195 (1987).Google Scholar
26Beyers, R.J. Appl. Phys. 56, 147 (1984).CrossRefGoogle Scholar
27Rudy, E.Z. Metallk. 54, 111 (1963).Google Scholar
28Rudy, E.Z. Metallk. 54, 203 (1963).Google Scholar
29Rudy, E. and Chang, Y. A. in Plansee Proceedings 1964, edited by Benesovsky, F. (Metallwerk Plansee, AG, Reute, Tirol, Austria, 1965), p. 788.Google Scholar
30Chang, Y. A. and Naujock, D.Metall. Trans. 3, 1963 (1972).Google Scholar
31Brewer, L. and Wengert, P.Metall. Trans. 4, 83 (1973).Google Scholar
32Boom, R.DeBoer, R. F. and Miedema, A. R.J. Less-Common Metals 45, 237 (1976).CrossRefGoogle Scholar
33Boom, R.DeBoer, R. F. and Miedema, A. R.J. Less-Common Metals 46, 271 (1976).CrossRefGoogle Scholar
34Kirkady, J. S. and Brown, L. C, Can. Metall. Q. 2, 89 (1963).Google Scholar
35Pearson, W. B.A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, London, 1967), Vol. 2.Google Scholar
36Hansen, M. and Anderko, K.Constitution of Binary Alloys, (McGraw-Hill, New York, 1958), 2nd ed.CrossRefGoogle Scholar
37Khalaff, K. and Schubert, K.J. Less-Common Metals 37, 129 (1974).CrossRefGoogle Scholar
38Elliott, K. P.Constitution of Binary Alloys (McGraw-Hill, New York, 1965.), 1st Suppl.Google Scholar
39Shunk, F. A.Constitution of Binary Alloys (McGraw-Hill, New York, 1969), 2nd Suppl.Google Scholar
40El-Boragy, M. and Schubert, K.Z. Metallk. 72, 279 (1981).Google Scholar
41El-Boragy, M. and Schubert, K.Z. Metallk. 61, 579 (1970).Google Scholar
42Kuan, T. S.Mater. Res. Soc. Symp. Proc. 31, 143 (1984).Google Scholar
43Hsieh, K.C.Zheng, X.Y.Lin, J. C. and Chang, Y. A. University of Wisconsin–Madison, 1987 (unpublished).Google Scholar
44Hall, M.Rau, M.F. and Evans, J. W.J. Electrochem. Soc. 133, 1934 (1986).CrossRefGoogle Scholar
45Thurmond, C. D.Schwartz, G. P.Kammlott, G. W. and Schwartz, B.J. Electrochem. Soc. 127, 1366 (1980).CrossRefGoogle Scholar