Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T23:36:06.906Z Has data issue: false hasContentIssue false

Quantification and effects of molecular oxygen and water in zinc phthalocyanine layers

Published online by Cambridge University Press:  31 January 2011

H. R. Kerp
Affiliation:
Utrecht University, Debye Institute, Section Interface Physics, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
K. T. Westerduin
Affiliation:
Interfaculty Reactor Institute, Reactor Physics Department, Mekelweg 15, 2629 JB Delft, The Netherlands
A. T. van Veen
Affiliation:
Interfaculty Reactor Institute, Reactor Physics Department, Mekelweg 15, 2629 JB Delft, The Netherlands
E. E. van Faassen
Affiliation:
Utrecht University, Debye Institute, Section Interface Physics, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
Get access

Abstract

Gas effusion measurements on zinc phthalocyanine (ZnPc) layers showed the presence of a significant amount of oxygen and water inside the material during exposure to ambient conditions. Of both species the bulk concentration lay in the range of 1020 molecules per cm3. Temperature-dependent analysis indicated that at 296 K all O2 molecules, and roughly one half of the H2O molecules, were mobilized and diffused with diffusion coefficients DO2 of 3 ∗ 10−8 cm2/s and DH2O of 1.3 ∗ 10−10 cm2/s. Electrical analysis of ZnPc layers in controlled atmospheres revealed that the electrical properties of the bulk were determined by O2, whereas H2O influences the surface conductivity. A space-charge density of (1.6 ± 0.2) ∗ 1016 O2 ions per cm3 was measured in atmospheric conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tang, C.W., Appl. Phys. Lett. 48, 183 (1986).CrossRefGoogle Scholar
2.Wöhrle, D., Kreienhoop, L. and Schlettwein, D.. Phthalocyanines and Related Macrocycles in Organic Photovoltaic Junctions, in Phthalocyanines—Properties and Applications, edited by Leznoff, C.C and Lever, A.B.P. (VCH Publishers, New York, 1996), Vol. 4, pp. 219284.Google Scholar
3.Kroon, J.M., Koehorst, R.B.M., van Dijk, M., Sanders, G.M., and Sudhölter, E.J.R., J. Mater. Chem. 7, 615 (1997).CrossRefGoogle Scholar
4.van Nostrum, C.F., Bosman, A.W., Gelinck, G.H., Schouten, P.G., Warman, J.M., Kentgens, A.P.M., Devillers, M.A.C., Meijerink, A., Picken, S.J., Sohling, U., Schouten, A-J., and Nolte, R.J.M., Chem. Eur. J. 1, 171 (1995).CrossRefGoogle Scholar
5.Law, K-V., Chem. Rev. 93, 449 (1993).CrossRefGoogle Scholar
6.Simon, J. and Andre, J.J., Molecular Semiconductors (Springer-Verlag, Berlin, 1985), pp. 73149.CrossRefGoogle Scholar
7.Yasunaga, H., Kojima, K., Yohda, H., and Takeya, K., J. Phys. Soc. Jpn. 37, 1024 (1974).CrossRefGoogle Scholar
8.Martin, M., André, J-J., and Simon, J., J. Appl. Phys. 54, 2792 (1983).CrossRefGoogle Scholar
9.Laurs, H. and Heiland, G., Thin Solid Films 149, 129 (1987).CrossRefGoogle Scholar
10.Meyer, J-P., Schlettwein, D., Wöhrl, D., and Jaeger, N.I., Thin Solid Films 258, 317 (1995).Google Scholar
11.Tagmouti, S., Oueriagli, A., Outzourhit, A., Khaidar, M., Ameziane, E.L., Yassar, A., Youssoufi, H.K., and Gamier, F., Synth. Met. 88, 109 (1997).CrossRefGoogle Scholar
12.Heller, E.M.B., Hydrogen Storage in Coated FeTi Thin Films (Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2000), pp. 3035.Google Scholar
13.Twarowski, A., J. Chem. Phys 77, 5840 (1982).CrossRefGoogle Scholar
14.Handbook of Chemistry and Physics, 60th ed, edited by Weast, R.C. (CRC Press, Boca Raton, FL, 1980).Google Scholar
15.Bensebaa, F. and Andre, J-J., J. Phys. Chem. 96, 5739 (1992).CrossRefGoogle Scholar
16.Pope, M. and Swenberg, C.E., Electronic Processes in Organic Crystals (Oxford University Press, Oxford, 1982).Google Scholar
17.Kerp, H.R., Donker, H., Koehorst, R., Schaafsma, T., and van Faassen, E.E., Chem. Phys. Lett. 298 (4–6), 302 (1998).CrossRefGoogle Scholar
18.Meissner, D., Siebentritt, S., and Günster, S., Proc. of SPIE 1729, 24 (1992).CrossRefGoogle Scholar
19.Kiess, H., Meyer, W., Baeriswyl, D., and Harbeke, G., J. Electron. Mater. 9, 763 (1980).CrossRefGoogle Scholar
20.Klofta, T., Danziger, J., Lee, P., Pankow, J., Nebesny, K., and Armstrong, N., J. Phys. Chem. 91, 5651 (1987).CrossRefGoogle Scholar
21.Kerp, H.R. and van Faassen, E.E., Chem. Phys. Lett. 332, 5 (2000).CrossRefGoogle Scholar