Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T16:50:11.876Z Has data issue: false hasContentIssue false

The properties of Mg protected by Al- and Al/Zn-enriched layers containing intermetallic phases

Published online by Cambridge University Press:  24 November 2015

Renata Mola*
Affiliation:
Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia P.P. 7, 25-314 Kielce, Poland
*
a)Address all correspondence to this author. e-mail: rmola@tu.kielce.pl
Get access

Abstract

The alloyed layers were produced on Mg by heating the specimens in contact with pure Al powder or Al + Zn powder mixtures. The powder material acting as the source of diffusion elements was held under pressure during heating, and this led to the formation of thick, continuous layers in a short heating time (1 h). The layer formation process took place through partial melting at the substrate/powder interface. The Al-enriched layer was characterized by a eutectic structure composed of an Mg17Al12 intermetallic phase and a solid solution of Al in Mg. The Al/Zn-enriched layers produced from Al + 20% Zn and Al + 40% Zn powder mixtures consisted of Mg17(Al,Zn)12 and Mg5Al2Zn2 and a solid solution of Al and Zn in Mg. The alloyed layers had higher hardness and better wear resistance than the Mg substrate. The results of the polarization measurements show that the Al- and the Al/Zn-enriched layers provide a certain level of protection to Mg against corrosion.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gray, J.E. and Luan, B.: Protective coatings on magnesium and its alloys—A critical review. J. Alloys Compd. 336, 88113 (2002).Google Scholar
Kiahosseini, S.R., Afshar, A., Larijani, M.M., and Yousefpour, M.: Adhesion, microstrain and corrosion behaviour of ZrN-coated AZ91 alloy as function of temperature. J. Mater. Res. 28, 27092714 (2013).CrossRefGoogle Scholar
Hsiao, H.Y. and Tsai, W.T.: Effect of heat treatment on anodization and electrochemical behavior of AZ91D magnesium alloy. J. Mater. Res. 20, 27632771 (2005).Google Scholar
Galun, R., Weisheit, A., and Mordike, B.L.: Improving the surface properties of magnesium by laser alloying. Corros. Rev. 16, 5374 (1998).CrossRefGoogle Scholar
Ignat, S., Sallamand, P., Grevey, D., and Lambertin, M.: Magnesium alloys laser (Nd:YAG) cladding and alloying with side injection of aluminium powder. Appl. Surf. Sci. 225, 124134 (2004).Google Scholar
Paital, S.R., Bhattacharya, A., Moncayo, M., Ho, Y.H., Mahdak, K., Nag, S., Banerjee, R., and Dahotre, N.B.: Improved corrosion and wear resistance of Mg alloys via laser surface modification of Al on AZ31B. Surf. Coat. Technol. 206, 23082315 (2012).Google Scholar
Yang, Y. and Wu, H.: Improving the wear resistance of AZ91D magnesium alloys by laser cladding with Al-Si powders. Mater. Lett. 63, 1921 (2009).Google Scholar
Gao, Y., Wang, C., Pang, H., Liu, H., and Yao, M.: Broad-beam laser cladding of Al-Cu alloy coating on AZ91HP magnesium alloy. Appl. Surf. Sci. 253, 49174922 (2007).Google Scholar
Singh, A. and Harimkar, S.P.: Laser surface engineering of magnesium alloys: A review. JOM 64(6), 716733 (2012).Google Scholar
Elahi, M.R., Sohi, M.H., and Safaei, A.: Liquid phase surface alloying of AZ91D magnesium alloy with Al and Ni powders. Appl. Surf. Sci. 258, 58765880 (2012).Google Scholar
Ye, H., Zhang, X., Chang, X., and Chen, R.: Microstructure and properties of Al alloying on AZ31 magnesium alloy. Adv. Mater. Res. 189193, 867870 (2011).Google Scholar
Spencer, K. and Zhang, M-X.: Heat treatment of cold spray coatings to form protective intermetallic layers. Scr. Mater. 61, 4447 (2009).Google Scholar
Bu, H., Yandouzi, M., Lu, C., and Jodoin, B.: Effect of heat treatment on the intermetallic layer of cold sprayed aluminum coatings on magnesium alloy. Surf. Coat. Technol. 205, 46654671 (2011).Google Scholar
Yang, H., Guo, X., Wu, G., Ding, W., and Birbilis, N.: Electrodeposition of chemically and mechanically protective Al-coatings on AZ91D Mg alloy. Corros. Sci. 53, 381387 (2011).Google Scholar
Zhu, T. and Gao, W.: Formation of intermetallic compound coating on magnesium AZ91 cast alloy. IOP Conf. Ser.: Mater. Sci. Eng. 4, 16 (2009).Google Scholar
He, M., Liu, L., Wu, Y., Tang, Z., and Hu, W.: Corrosion properties of surface-modified AZ91D magnesium alloy. Corros. Sci. 50, 32673273 (2008).Google Scholar
Zhong, C., He, M.F., Liu, L., Chen, Y.J., Shen, B., Wu, Y.T., Deng, Y.D., and Hu, W.B.: Formation of an aluminum-alloyed coating on AZ91D magnesium alloy in molten salts at lower temperature. Surf. Coat. Technol. 205, 24122418 (2010).Google Scholar
Zhong, C., He, M., Liu, L., Wu, Y., Chen, Y., Deng, Y., Shen, B., and Hu, W.: Lower temperature fabrication of continuous intermetallic coatings on AZ91D magnesium alloy in molten salts. J. Alloys Compd. 504, 377381 (2010).Google Scholar
He, M., Liu, L., Wu, Y., Zhong, C., Hu, W., and Pan, D.: Kinetics and mechanism of multilayer Mg-Al intermetallic compound coating formation of magnesium alloy by AlCl3-NaCl molten salt bath treatment. J. Alloys Compd. 551, 389398 (2013).Google Scholar
Shigematsu, I., Nakamura, M., Saitou, N., and Shimojima, K.: Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating. J. Mater. Sci. Lett. 19, 473475 (2000).CrossRefGoogle Scholar
Zhu, L. and Song, G.: Improved corrosion resistance of AZ91D magnesium alloy by an aluminum-alloyed coating. Surf. Coat. Technol. 200, 28342840 (2006).CrossRefGoogle Scholar
Liu, F., Li, X., Liang, W., Zhao, X., and Zhang, Y.: Effect of temperature on microstructures and properties of aluminized coating on pure magnesium. J. Alloys Compd. 478, 579585 (2009).Google Scholar
Liu, F., Liang, W., Li, X., Zhao, X., Zhang, Y., and Wang, H.: Improvement of corrosion resistance of pure magnesium via vacuum pack treatment. J. Alloys Compd. 461, 399403 (2008).Google Scholar
Zhang, M.X. and Kelly, P.M.: Surface alloying of AZ91D alloy by diffusion coating. J. Mater. Res. 17, 24772479 (2002).Google Scholar
Youping, M., Kewei, X., Weixin, W., Xipeng, H., and Pengfei, L.: The effect of solid diffusion surface alloying on properties of ZM5 magnesium alloy. Surf. Coat. Technol. 190, 165170 (2005).Google Scholar
Hirmke, J., Zhang, M.X., and StJohn, D.H.: Surface alloying of AZ91E alloy by Al-Zn packed powder diffusion coating. Surf. Coat. Technol. 206, 425433 (2011).Google Scholar
Hirmke, J., Zhang, M.X., and StJohn, D.H.: Influence of chemical composition of Mg alloys on surface alloying by diffusion coating. Metall. Mater. Trans. A 43, 16211628 (2012).Google Scholar
Mola, R.: Fabrication and microstructural characterization of Al/Zn-enriched layers on pure magnesium. Mater. Charact. 78, 121128 (2013).Google Scholar
Mola, R. and Jagielska-Wiaderek, K.: Formation of Al-enriched surface layers through reaction at the Mg-substrate/Al-powder interface. Surf. Interface Anal. 46, 577580 (2014).Google Scholar
Mola, R.: Fabrication and microstructure of diffusion alloyed layers on pure magnesium substrate. Arch. Metall. Mater. 59(4), 14191422 (2014).Google Scholar
Dziadoń, A., Mola, R., and Błaż, L.: Formation of layered Mg/eutectic composite using diffusional processes at the Mg-Al interface. Arch. Metall. Mater. 56(3), 677684 (2011).Google Scholar
Dziadoń, A., Konieczny, M., Gajewski, M., Iwan, M., and Rzączyńska, Z.: Microstructure evolution at the Cu-Ti interface during high temperature synthesis of copper-intermetallic phases layered composite. Arch. Metall. Mater. 54(2), 455466 (2009).Google Scholar
Czerwiński, F.: The oxidation behaviour of an AZ91D magnesium alloy at high temperatures. Acta Mater. 50, 26392654 (2002).Google Scholar
Donnadieu, P., Quivy, A., Tarfa, T., Ochin, P., Dezellus, A., Harmelin, M.G., Liang, P., Lukas, H.L., Seifert, H.J., Aldinger, F., and Effenberg, G.: On the crystal structure and solubility range of the thernary φ phase in Mg-Al-Zn system. Z. Metallkd. 88(12), 911916 (1997).Google Scholar
Czerwiński, F.: Near-liquidus molding of Mg-Al and Mg-Al-Zn alloys. Acta Mater. 53, 19731984 (2005).Google Scholar
Ohno, M., Mirkovic, D., and Schmid-Fetzer, R.: Phase equilibria and solidification of Mg-rich Mg-Al-Zn alloys. Mater. Sci. Eng., A 421, 328337 (2006).Google Scholar
Südholz, A.D., Kirkland, N.T., Buchheit, R.G., and Birbilis, N.: Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys. Electrochem. Solid-State Lett. 14(2), C5C7 (2011).Google Scholar
Song, G., Atrens, A., Wu, X., and Zhang, B.: Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corros. Sci. 40(10), 17691791 (1998).Google Scholar
Song, G., Atrens, A., and Dargusch, M.: Influence of microstructure on the corrosion of diecast AZ91D. Corros. Sci. 41, 249273 (1999).Google Scholar
Song, G. and Atrens, A.: Corrosion mechanism of magnesium alloys. Adv. Eng. Mater. 1(1), 1133 (1999).Google Scholar
Singh Raman, R.K.: The role of microstructure in localized corrosion of magnesium alloys. Metall. Mater. Trans. A 35, 25252531 (2004).Google Scholar
Zhong, C., Liu, F., Wu, Y., Le, J., Liu, L., Me, H., Zhu, J., and Hu, W.: Protective diffusion coatings on magnesium alloys. A review of recent developments. J. Alloys Compd. 520, 1121 (2012).Google Scholar
He, M., Wu, Y., Tang, Z., and Hu, W.: Thermochemical computations and experimentation on deposition of aluminum and zinc on magnesium alloy. J. Alloys Compd. 469, 417421 (2009).Google Scholar